Changes

Jump to: navigation, search

Neural Networks

2,593 bytes added, 20:52, 27 July 2020
no edit summary
<span id="AlphaZero"></span>
===Alpha Zero===
In December 2017, the [[Google]] [[DeepMind]] team along with former [[Giraffe]] author [[Matthew Lai]] reported on their generalized [[AlphaZero]] algorithm, combining [[Deep Learning|Deep learning]] with [[Monte-Carlo Tree Search]]. AlphaZero can achieve, tabula rasa, superhuman performance in many challenging domains with some training effort. Starting from random play, and given no domain knowledge except the game rules, AlphaZero achieved a superhuman level of play in the games of chess and [[Shogi]] as well as Go, and convincingly defeated a world-champion program in each case <ref>[[David Silver]], [[Thomas Hubert]], [[Julian Schrittwieser]], [[Ioannis Antonoglou]], [[Matthew Lai]], [[Arthur Guez]], [[Marc Lanctot]], [[Laurent Sifre]], [[Dharshan Kumaran]], [[Thore Graepel]], [[Timothy Lillicrap]], [[Karen Simonyan]], [[Demis Hassabis]] ('''2017'''). ''Mastering Chess and Shogi by Self-Play with a General Reinforcement Learning Algorithm''. [https://arxiv.org/abs/1712.01815 arXiv:1712.01815]</ref>. The open souece projects [[Leela Zero]] (Go) and its chess adaptation [[Leela Chess Zero]] successfully re-implemented the ideas of DeepMind.===NNUE===[[NNUE]] reverse of &#398;U&#1048;&#1048; - Efficiently Updatable Neural Networks, is an NN architecture intended to replace the [[Evaluation|evaluation]] of [[Shogi]], [[Chess|chess]] and other board game playing [[Alpha-Beta|alpha-beta]] searchers. NNUE was introduced in 2018 by [[Yu Nasu]] <ref>[[Yu Nasu]] ('''2018'''). ''&#398;U&#1048;&#1048; Efficiently Updatable Neural-Network based Evaluation Functions for Computer Shogi''. Ziosoft Computer Shogi Club, [https://github.com/ynasu87/nnue/blob/master/docs/nnue.pdf pdf] (Japanese with English abstract)</ref>,and was used in Shogi adaptations of [[Stockfish]] such as '''YaneuraOu''' <ref>[https://github.com/yaneurao/YaneuraOu GitHub - yaneurao/YaneuraOu: YaneuraOu is the World's Strongest Shogi engine(AI player), WCSC29 1st winner, educational and USI compliant engine]</ref> ,and '''Kristallweizen-kai''' <ref>[https://github.com/Tama4649/Kristallweizen/ GitHub - Tama4649/Kristallweizen: 第29回世界コンピュータ将棋選手権 準優勝のKristallweizenです。</ref>, apparently with [[AlphaZero]] strength <ref>[http://www.talkchess.com/forum3/viewtopic.php?f=2&t=72754 The Stockfish of shogi] by [[Larry Kaufman]], [[CCC]], January 07, 2020</ref>. [[Nodchip]] incorporated NNUE into the chess playing Stockfish 10 as a proof of concept <ref>[http://www.talkchess.com/forum3/viewtopic.php?f=2&t=74059 Stockfish NN release (NNUE)] by [[Henk Drost]], [[CCC]], May 31, 2020</ref>, yielding in the hype about [[Stockfish NNUE]] in summer 2020 <ref>[http://yaneuraou.yaneu.com/2020/06/19/stockfish-nnue-the-complete-guide/ Stockfish NNUE – The Complete Guide], June 19, 2020 (Japanese and English)</ref>.Its heavily over parametrized computational most expensive input layer is efficiently [[Incremental Updates|incremental updated]] in [[Make Move|make]] and [[Unmake Move|unmake move]].
<span id="engines"></span>
===NN Chess Programs===
* [[Memory]]
* [[Neural MoveMap Heuristic]]
* [[NNUE]]
* [[Pattern Recognition]]
* [[Temporal Difference Learning]]
* [[James Kirkpatrick]], [[Mathematician#RPascanu|Razvan Pascanu]], [[Neil C. Rabinowitz]], [[Joel Veness]], [[Guillaume Desjardins]], [[Mathematician#AARusu|Andrei A. Rusu]], [[Kieran Milan]], [[John Quan]], [[Tiago Ramalho]], [[Agnieszka Grabska-Barwinska]], [[Demis Hassabis]], [[Claudia Clopath]], [[Dharshan Kumaran]], [[Mathematician#RHadsell|Raia Hadsell]] ('''2016'''). ''Overcoming catastrophic forgetting in neural networks''. [https://arxiv.org/abs/1612.00796 arXiv:1612.00796] <ref>[http://www.talkchess.com/forum3/viewtopic.php?f=7&t=70704 catastrophic forgetting] by [[Daniel Shawul]], [[CCC]], May 09, 2019</ref>
* [https://dblp.uni-trier.de/pers/hd/n/Niu:Zhenxing Zhenxing Niu], [https://dblp.uni-trier.de/pers/hd/z/Zhou:Mo Mo Zhou], [https://dblp.uni-trier.de/pers/hd/w/Wang_0003:Le Le Wang], [[Xinbo Gao]], [https://dblp.uni-trier.de/pers/hd/h/Hua_0001:Gang Gang Hua] ('''2016'''). ''Ordinal Regression with Multiple Output CNN for Age Estimation''. [https://dblp.uni-trier.de/db/conf/cvpr/cvpr2016.html CVPR 2016], [https://www.cv-foundation.org/openaccess/content_cvpr_2016/app/S21-20.pdf pdf]
* [[Li Jing]], [[Yichen Shen]], [[Tena Dubček]], [[John Peurifoy]], [[Scott Skirlo]], [[Mathematician#YLeCun|Yann LeCun]], [[Max Tegmark]], [[Marin Soljačić]] ('''2016'''). ''Tunable Efficient Unitary Neural Networks (EUNN) and their application to RNNs''. [https://arxiv.org/abs/1612.05231 arXiv:1612.05231] <ref>[http://talkchess.com/forum3/viewtopic.php?f=2&t=74059 Stockfish NN release (NNUE)] by [[Henk Drost]], [[CCC]], May 31, 2020 » [[Stockfish]]</ref>
'''2017'''
* [[Yutian Chen]], [[Matthew W. Hoffman]], [[Sergio Gomez Colmenarejo]], [[Misha Denil]], [[Timothy Lillicrap]], [[Matthew Botvinick]], [[Nando de Freitas]] ('''2017'''). ''Learning to Learn without Gradient Descent by Gradient Descent''. [https://arxiv.org/abs/1611.03824v6 arXiv:1611.03824v6], [http://dblp.uni-trier.de/db/conf/icml/icml2017.html ICML 2017]
* [https://dblp.org/pers/hd/s/Serb:Alexander Alexantrou Serb], [[Edoardo Manino]], [https://dblp.org/pers/hd/m/Messaris:Ioannis Ioannis Messaris], [https://dblp.org/pers/hd/t/Tran=Thanh:Long Long Tran-Thanh], [https://www.orc.soton.ac.uk/people/tp1f12 Themis Prodromakis] ('''2017'''). ''[https://eprints.soton.ac.uk/425616/ Hardware-level Bayesian inference]''. [https://nips.cc/Conferences/2017 NIPS 2017] » [[Analog Evaluation]]
'''2018'''
* [[Yu Nasu]] ('''2018'''). ''&#398;U&#1048;&#1048; Efficiently Updatable Neural-Network based Evaluation Functions for Computer Shogi''. Ziosoft Computer Shogi Club, [https://github.com/ynasu87/nnue/blob/master/docs/nnue.pdf pdf] (Japanese with English abstract) » [[NNUE]]
* [[Kei Takada]], [[Hiroyuki Iizuka]], [[Masahito Yamamoto]] ('''2018'''). ''[https://link.springer.com/chapter/10.1007%2F978-3-319-75931-9_2 Computer Hex Algorithm Using a Move Evaluation Method Based on a Convolutional Neural Network]''. [https://link.springer.com/bookseries/7899 Communications in Computer and Information Science] » [[Hex]]
* [[Matthia Sabatelli]], [[Francesco Bidoia]], [[Valeriu Codreanu]], [[Marco Wiering]] ('''2018'''). ''Learning to Evaluate Chess Positions with Deep Neural Networks and Limited Lookahead''. ICPRAM 2018, [http://www.ai.rug.nl/~mwiering/GROUP/ARTICLES/ICPRAM_CHESS_DNN_2018.pdf pdf]
==2020 ...==
* [http://www.talkchess.com/forum3/viewtopic.php?f=7&t=74077 How to work with batch size in neural network] by Gertjan Brouwer, [[CCC]], June 02, 2020
* [http://www.talkchess.com/forum3/viewtopic.php?f=7&t=74531 NNUE accessible explanation] by [[Martin Fierz]], [[CCC]], July 21, 2020
: [http://www.talkchess.com/forum3/viewtopic.php?f=7&t=74531&start=1 Re: NNUE accessible explanation] by [[Jonathan Rosenthal]], [[CCC]], July 23, 2020
: [http://www.talkchess.com/forum3/viewtopic.php?f=7&t=74531&start=5 Re: NNUE accessible explanation] by [[Jonathan Rosenthal]], [[CCC]], July 24, 2020
=External Links=

Navigation menu