25,161
edits
Changes
no edit summary
* [[Max Jaderberg]], [[Volodymyr Mnih]], [[Wojciech Marian Czarnecki]], [[Tom Schaul]], [[Joel Z. Leibo]], [[David Silver]], [[Koray Kavukcuoglu]] ('''2016'''). ''Reinforcement Learning with Unsupervised Auxiliary Tasks''. [https://arxiv.org/abs/1611.05397v1 arXiv:1611.05397v1]
* [[Jane X Wang]], [[Zeb Kurth-Nelson]], [[Dhruva Tirumala]], [[Hubert Soyer]], [[Joel Z Leibo]], [[Rémi Munos]], [[Charles Blundell]], [[Dharshan Kumaran]], [[Matthew Botvinick]] ('''2016'''). ''Learning to reinforcement learn''. [https://arxiv.org/abs/1611.05763 arXiv:1611.05763]
* [[Zacharias Georgiou]], [[Evangelos Karountzos]], [[Yaroslav Shkarupa]], [[Matthia Sabatelli]] ('''2016'''). ''A Reinforcement Learning Approach for Solving KRK Chess Endgames''. [https://github.com/paintception/A-Reinforcement-Learning-Approach-for-Solving-Chess-Endgames/blob/master/project_papers/final_paper/reinforcement-learning-approach(2).pdf pdf] <ref>[https://github.com/paintception/A-Reinforcement-Learning-Approach-for-Solving-Chess-Endgames GitHub - paintception/A-Reinforcement-Learning-Approach-for-Solving-Chess-Endgames: Machine Learning - Reinforcement Learning]</ref>
'''2017'''
* [[Hirotaka Kameko]], [[Jun Suzuki]], [[Naoki Mizukami]], [[Yoshimasa Tsuruoka]] ('''2017'''). ''Deep Reinforcement Learning with Hidden Layers on Future States''. [[Conferences#IJCA2017|Computer Games Workshop at IJCAI 2017]], [http://www.lamsade.dauphine.fr/~cazenave/cgw2017/Kameko.pdf pdf]
* [https://dblp.org/pid/233/8144.html Indu John], [https://scholar.google.co.in/citations?user=1QlrvHkAAAAJ&hl=en Chandramouli Kamanchi], [[Shalabh Bhatnagar]] ('''2020'''). ''Generalized Speedy Q-Learning''. [[IEEE#CSL|IEEE Control Systems Letters]], Vol. 4, No. 3, [https://arxiv.org/abs/1911.00397 arXiv:1911.00397]
* [[Takuya Hiraoka]], [https://dblp.org/pers/hd/i/Imagawa:Takahisa Takahisa Imagawa], [https://dblp.org/pers/hd/t/Tangkaratt:Voot Voot Tangkaratt], [https://dblp.org/pers/hd/o/Osa:Takayuki Takayuki Osa], [https://dblp.org/pers/hd/o/Onishi:Takashi Takashi Onishi], [https://dblp.org/pers/hd/t/Tsuruoka:Yoshimasa Yoshimasa Tsuruoka] ('''2020'''). ''Meta-Model-Based Meta-Policy Optimization''. [https://arxiv.org/abs/2006.02608 arXiv:2006.02608]
* [[Julian Schrittwieser]], [[Ioannis Antonoglou]], [[Thomas Hubert]], [[Karen Simonyan]], [[Laurent Sifre]], [[Simon Schmitt]], [[Arthur Guez]], [[Edward Lockhart]], [[Demis Hassabis]], [[Thore Graepel]], [[Timothy Lillicrap]], [[David Silver]] ('''2020'''). ''[https://www.nature.com/articles/s41586-020-03051-4 Mastering Atari, Go, chess and shogi by planning with a learned model]''. [https://en.wikipedia.org/wiki/Nature_%28journal%29 Nature], Vol. 588 <ref>[https://deepmind.com/blog/article/muzero-mastering-go-chess-shogi-and-atari-without-rules?fbclid=IwAR3mSwrn1YXDKr9uuGm2GlFKh76wBilex7f8QvBiQecwiVmAvD6Bkyjx-rE MuZero: Mastering Go, chess, shogi and Atari without rules]</ref> <ref>[https://github.com/koulanurag/muzero-pytorch GitHub - koulanurag/muzero-pytorch: Pytorch Implementation of MuZero]</ref>
* [[Tristan Cazenave]], [[Yen-Chi Chen]], [[Guan-Wei Chen]], [[Shi-Yu Chen]], [[Xian-Dong Chiu]], [[Julien Dehos]], [[Maria Elsa]], [[Qucheng Gong]], [[Hengyuan Hu]], [[Vasil Khalidov]], [[Cheng-Ling Li]], [[Hsin-I Lin]], [[Yu-Jin Lin]], [[Xavier Martinet]], [[Vegard Mella]], [[Jeremy Rapin]], [[Baptiste Roziere]], [[Gabriel Synnaeve]], [[Fabien Teytaud]], [[Olivier Teytaud]], [[Shi-Cheng Ye]], [[Yi-Jun Ye]], [[Shi-Jim Yen]], [[Sergey Zagoruyko]] ('''2020'''). ''Polygames: Improved zero learning''. [[ICGA Journal#42_4|ICGA Journal, Vol. 42, No. 4]], [https://arxiv.org/abs/2001.09832 arXiv:2001.09832], [https://arxiv.org/abs/2001.09832 arXiv:2001.09832]
* [[Matthia Sabatelli]], [https://github.com/glouppe Gilles Louppe], [https://scholar.google.com/citations?user=tyFTsmIAAAAJ&hl=en Pierre Geurts], [[Marco Wiering]] ('''2020'''). ''The Deep Quality-Value Family of Deep Reinforcement Learning Algorithms''. [https://dblp.org/db/conf/ijcnn/ijcnn2020.html#SabatelliLGW20 IJCNN 2020] <ref>[https://github.com/paintception/Deep-Quality-Value-DQV-Learning- GitHub - paintception/Deep-Quality-Value-DQV-Learning-: DQV-Learning: a novel faster synchronous Deep Reinforcement Learning algorithm]</ref>
* [[Quentin Cohen-Solal]] ('''2020'''). ''Learning to Play Two-Player Perfect-Information Games without Knowledge''. [https://arxiv.org/abs/2008.01188 arXiv:2008.01188]
* [[Quentin Cohen-Solal]], [[Tristan Cazenave]] ('''2020'''). ''Minimax Strikes Back''. [https://arxiv.org/abs/2012.10700 arXiv:2012.10700]
'''2021'''
* [[Maximilian Alexander Gehrke]] ('''2021'''). ''Assessing Popular Chess Variants Using Deep Reinforcement Learning''. Master thesis, [[Darmstadt University of Technology|TU Darmstadt]], [https://ml-research.github.io/papers/gehrke2021assessing.pdf pdf] » [[CrazyAra]]
* [[Dominik Klein]] ('''2021'''). ''[https://github.com/asdfjkl/neural_network_chess Neural Networks For Chess]''. [https://github.com/asdfjkl/neural_network_chess/releases/tag/v1.1 Release Version 1.1 · GitHub] <ref>[https://www.talkchess.com/forum3/viewtopic.php?f=2&t=78283 Book about Neural Networks for Chess] by dkl, [[CCC]], September 29, 2021</ref>
* [[Quentin Cohen-Solal]], [[Tristan Cazenave]] ('''2021'''). ''DESCENT wins five gold medals at the Computer Olympiad''. [[ICGA Journal#43_2|ICGA Journal, Vol. 43, No. 2]]
* [[Boris Doux]], [[Benjamin Negrevergne]], [[Tristan Cazenave]] ('''2021'''). ''Deep Reinforcement Learning for Morpion Solitaire''. [[Advances in Computer Games 17]]
* [[Weirui Ye]], [[Shaohuai Liu]], [[Thanard Kurutach]], [[Pieter Abbeel]], [[Yang Gao]] ('''2021'''). ''Mastering Atari Games with Limited Data''. [https://arxiv.org/abs/2111.00210 arXiv:2111.00210] <ref>[https://github.com/YeWR/EfficientZero GitHub - YeWR/EfficientZero: Open-source codebase for EfficientZero, from "Mastering Atari Games with Limited Data" at NeurIPS 2021]</ref> <ref>[https://www.talkchess.com/forum3/viewtopic.php?f=7&t=78790 Want to train nets faster?] by [[Dann Corbit]], [[CCC]], December 01, 2021</ref>
=Postings=
* [http://videolectures.net/deeplearning2016_pineau_reinforcement_learning/ Introduction to Reinforcement Learning] by [[Joelle Pineau]], [[McGill University]], 2016, [https://en.wikipedia.org/wiki/YouTube YouTube] Video
: {{#evu:https://www.youtube.com/watch?v=O_1Z63EDMvQ|alignment=left|valignment=top}}
==OpenSpielGitHub==
* [https://github.com/deepmind/open_spiel GitHub - deepmind/open_spiel: OpenSpiel is a collection of environments and algorithms for research in general reinforcement learning and search/planning in games] <ref>[[Marc Lanctot]], [[Edward Lockhart]], [[Jean-Baptiste Lespiau]], [[Vinícius Flores Zambaldi]], [[Satyaki Upadhyay]], [[Julien Pérolat]], [[Sriram Srinivasan]], [[Finbarr Timbers]], [[Karl Tuyls]], [[Shayegan Omidshafiei]], [[Daniel Hennes]], [[Dustin Morrill]], [[Paul Muller]], [[Timo Ewalds]], [[Ryan Faulkner]], [[János Kramár]], [[Bart De Vylder]], [[Brennan Saeta]], [[James Bradbury]], [[David Ding]], [[Sebastian Borgeaud]], [[Matthew Lai]], [[Julian Schrittwieser]], [[Thomas Anthony]], [[Edward Hughes]], [[Ivo Danihelka]], [[Jonah Ryan-Davis]] ('''2019'''). ''OpenSpiel: A Framework for Reinforcement Learning in Games''. [https://arxiv.org/abs/1908.09453 arXiv:1908.09453]</ref>
** [https://github.com/deepmind/open_spiel/tree/master/open_spiel/algorithms open_spiel/open_spiel/algorithms at master · deepmind/open_spiel · GitHub]
** [https://github.com/deepmind/open_spiel/tree/master/open_spiel/games open_spiel/open_spiel/games at master · deepmind/open_spiel · GitHub]
*** [https://github.com/deepmind/open_spiel/tree/master/open_spiel/games/chess open_spiel/open_spiel/games/chess at master · deepmind/open_spiel · GitHub]
* [https://github.com/koulanurag/muzero-pytorch GitHub - koulanurag/muzero-pytorch: Pytorch Implementation of MuZero] <ref>[[Julian Schrittwieser]], [[Ioannis Antonoglou]], [[Thomas Hubert]], [[Karen Simonyan]], [[Laurent Sifre]], [[Simon Schmitt]], [[Arthur Guez]], [[Edward Lockhart]], [[Demis Hassabis]], [[Thore Graepel]], [[Timothy Lillicrap]], [[David Silver]] ('''2020'''). ''[https://www.nature.com/articles/s41586-020-03051-4 Mastering Atari, Go, chess and shogi by planning with a learned model]''. [https://en.wikipedia.org/wiki/Nature_%28journal%29 Nature], Vol. 588</ref>
* [https://github.com/YeWR/EfficientZero GitHub - YeWR/EfficientZero: Open-source codebase for EfficientZero, from "Mastering Atari Games with Limited Data" at NeurIPS 2021] <ref>[[Weirui Ye]], [[Shaohuai Liu]], [[Thanard Kurutach]], [[Pieter Abbeel]], [[Yang Gao]] ('''2021'''). ''Mastering Atari Games with Limited Data''. [https://arxiv.org/abs/2111.00210 arXiv:2111.00210]</ref>
=References=