
A comparison of Rybka 1.0 Beta and Fruit 2.1

This document is designed as a reference guide to various technical elements
in the discussions with Rybka 1.0 Beta and Fruit 2.1. In some sense, it is a
prequel to the Rybka/IPPOLIT analysis. However, the issues considered are not
really the same. The claims made about Rybka/IPPOLIT were of a sufficiently
different nature to those about Rybka/Fruit that a different type of discussion
seems necessary. [This document is the version of March 11, 2011].

1.1 Evidence, and standards therein

This document shall outline the evidence regarding Rybka 1.0 Beta and Fruit 2.1,
and try (at times) to put it into context. In particular, one must make a choiceThis document is

not intended to be a
“statement for the
prosection” per se,
but could presum-
ably prove useful
to either side, de-
pending upon what
standard is used.

of a standard of comparison. Many have been suggested, such as “code” copy-
ing, or “copyright” considerations. It is my opinion, however, that the proper
standard to use is that which is commonly used in the context of computer
chess (or more generally, computer boardgames). This has, at least historically,
been firstly construed to mean that no code which has a demonstrative influence
on the performance of the program in question may be borrowed from a com-
petitor.1 The previous decisions in this genre include that of the case between
Berliner and Hsu, where the latter agreed to remove/rewrite approximately 0.3%
of his codebase (some sort of simulator of the Cray Blitz evaluation) due to the
fact that it had been taken from the HITECH project at an earlier time.

Expanding on this, merely re-typing and/or “translating” code (possibly
while tweaking/tuning some of the numbers) is also not likely to pass an “orig-
inality” test. There is not, however, a cleanly delineated line between “code”
and “ideas” (for instance), and I really can’t give much guidance for that. This
report can perhaps be seen as directed at a hypothetical tournament arbitrator
who has been asked to determine whether Rybka 1.0 Beta is sufficiently original
to allow it to be in the same event as Fruit 2.1.2

Furthermore, this document is fundamentally incapable of anticipating even
legitimate explanations of the evidence here enumerated, and as such, is more
of a call to further conversation than the final word.

2 Outline of the evidence

There are various major points of evidence between Fruit 2.1 and Rybka 1.0
Beta, and a number of minor and/or more circumstantial ones. The major
points of evidence include:

� the use of exactly the same evaluation features;
� the identical ordering of operations at the root node in the search;
� the same type of PST-scheme, re-using the identical File/Rank/Line weights.

1There do exist counterexamples, such as re-use of Nalimov tablebases and probing code.
Another is Crafty (and Rybka 4) using Pradu Kannan’s magic multiplication code from Buzz.

2Just to recapitulate, this means I am largely going to avoid GPL and/or copyright issues.

1

The lesser pieces of evidences include:

� various similarities in data structures in hashing;

� the re-appearance of 10-30-60-100 scaling implemented as 26-77-154-256;

� some commonality of UCI parsing code, including a spurious “0.0” float-
based comparison in the integer-based time management code of Rybka.

Some of these can be considered “ideas” rather than “code” for various purposes;
the standard I adopt herein makes some distinction between the two, but is not
so strict so as to demand any re-appearance of any specific code or numerology.

It must be said that it is not entirely clear what is “fair game” to re-use
from an open-source program. For instance, pursuant to the first major point
of above, one of the more notable “ideas” of Fruit 2.1 was evaluation based
primarily on mobility. Below I compare the Fruit 2.1 evaluation routine to that
found in Rybka 1.0 Beta. While a large (indeed, almost complete) match is
found, it is presumably feasible to opine that the Fruit source code can be taken
as a “manual” for chess programming (perhaps in the sense of a modern version
of How Computers Play Chess), and if this paradigmatic view is accepted, then
the re-use of the same evaluation components might arguably be less derelict.

3 Commonality of evaluation features
See addendum D.1.
Whether any copy-
ing exceeds “just”
plagiarism is yet an
open question.

See addendum D.2
for examples of eval
in other engines.

Most of the work here was first done by Zach Wegner. I have verified much of it
(see annotated ASM dump here). The crux of the conclusion is that Rybka 1.0
Beta and Fruit 2.1 have exactly the same evaluation features.3 I will simply
enumerate these here, and in almost all cases the functionality is the same.

3.1 Piece evaluation (omitting king safety for now)

3.1.1 Knights (see 0x4018d0 and 0x401eb0 in 64-bit Rybka 1.0 Beta)

For footnote 4, see
also addendum C.1.

Both Rybka and Fruit have mobility as the only knight evaluation component.4

3.1.2 Bishops (0x401971-0401a3a and 0x401f60-0x40202a)

Both Rybka and Fruit consider only mobility as the primary evaluation compo-
nent with bishops. Both Rybka (0x4026b3-0x402745) and Fruit have a trapped
bishop penalty; the same definition of “trapped” is used in each (computed via
bitboards in Rybka), though the penalty is halved in Fruit in one case. Both
Rybka (0x40274b-0x4027f6) and Fruit have a blocked bishop penalty for (say)
a bishop on c1, a friendly pawn on d2, and a blocking unit on d3. Both Rybka
(0x402885-0x4028ba) and Fruit halve the overall evaluation in an opposite-
colour bishop endgame when the pawn counts differ by no more than 2 (both
via a flag in a material table, then a separate test for opposite colouring).

3Note that Rybka 1.0 Beta uses bitboards, making direct code comparison ineffective.
4Both also use the same “vanilla” notion of mobility throughout, as opposed to variants

such as “safe-square” or “forward” mobility. For instance, Larry Kaufman used these more
complicated mobility measures when he wrote the evaluation function for Rybka 3.

2

http://www.open-chess.org/download/file.php?id=303

3.1.3 Rooks (0x401a70-0x401bf8 and 0x402064-0x4021a7)

Both Rybka and Fruit consider mobility, open files, semi-open files, whether the
opposing king is on/adjacent to an semi-open file (with an identical “sufficient
material” criterion for this), and a 7th rank bonus. With the 7th rank bonus,
both Rybka and Fruit require the opponent to have: either at least one pawn on
the 7th rank, or the king on the 8th rank. Both Rybka (0x4027fc-0x40285a)
and Fruit penalise a blocked rook; as with bishops, the definitions coincide.

Overall, the only real difference for rooks is in the computation of an “open
file” – when a rook is in front of a friendly pawn (wRa3/wPa2 for instance),
Fruit does not consider this to be (semi-)“open”, but Rybka does.

3.1.4 Queens (0x401c30-0x401d96 and 0x4021e0-0x402336)

Both Rybka and Fruit consider mobility for queens, and a 7th rank bonus. With
the 7th rank bonus, both Rybka and Fruit again require the opponent to have
either: at least one pawn on the seventh rank, or the king on the eighth rank.

3.2 King Safety (0x401db6-0x401e34 and 0x40233c-0x4023bd)

Both Rybka and Fruit compute king safety by determining which pawns/pieces
(ignoring kings) attack a square adjacent to the opponent’s king. For each such
attacker, a counter is incremented, and a score is added based on the attacker
type. For instance, in Fruit the KingAttackUnit is 0 for a pawn, 1 for minors,
2 for a rook, and 4 for a queen. In Rybka these are 0, 941, 418, 666, and 532, and
Rybka also only computes “yes/no” as to whether any pawns attack a square
around the enemy king, while Fruit counts the number of such pawns. Both
only penalise for king danger when the opponent has at least two pieces, one
being a queen. The penalty is determined by a table-lookup depending on the
number of attacking units, times the score of above, divided by a scaling factor.

3.2.1 King Shelter/Storm (0x408b97-0x408f85, 0x401e05, 0x402394)

Both Rybka and Fruit compute pawn shelter/storm for a king based upon three
adjacent files (this idea seems older than Fruit, so I omit the details). Rybka
uses a look-up table of patterns, while Fruit does bit-scanning. Both can reduce
any penalties when castling rights exist. This is done via an averaging, and
both seem to use the same method. E.g., let x be the shelter/storm value at e1,
and y = x. If kingside castling rights exist, replace y by the min of y and the
shelter/storm value at g1. Similarly for queenside. Then the penalty is (x+y)/2.

3.3 Pawn Evaluation (0x408870-0x4089da and 0x408a20-0x408b91)

Both Rybka and Fruit consider (in order): doubled pawns, isolated pawns (on
open/closed files), backward pawns (open/closed), detection of passed pawns,
and candidate passed pawns. This is all fairly standard, though I don’t know ifSee addendum C.2

about the constant
nature of bonuses.

this exact choice/ordering appeared before Fruit. The definition of “backward”
is slightly different in Rybka, as is a minor variation with candidate pawns.
In §6.2.2 I discuss the similarity of relative numerology in candidates/passers.

3

3.3.1 Passed Pawns (0x402410-0x40251f and 0x402570-0x402698)
Both Rybka and Fruit start with a raw bonus for a passed pawn, depending on
the game phase and the rank. There are then various bonuses for a passed pawn
being dangerous. When the opponent has no pieces, an unstoppable passer is
highly rewarded. When there are pieces, Fruit gives a bonus if all the following
are true: the opponent does not (currently) have any pieces blocking it; we
are not blocking it; and the pawn can advance safely (this uses SEE). Rybka
splits up these three features in a piecemeal fashion with a bonus for each, and
considers not only the square directly in front of the pawn, but all those until
the promotion square (and “attacks” bitboards are used instead of SEE).

Both Rybka and Fruit give a bonus/penalty depending upon the distance of
each king to the square in front of the pawn. In Fruit these are solely based on
the distance, while the rank of the pawn is additionally included in Rybka.

The similarity of relative numerology for passed pawns is discussed more
below; the relative scaling for each rank-based bonus in Rybka is essentially
10-30-60-100, though in units of 256 as in Fruit. I would say this is the deepest
piece of evidence with passed pawns, as other components either have slight
variations in Rybka or are not specific to Fruit.

3.4 Interpolation (0x4028c1-0x4028dc) and sundry
Both Rybka and Fruit interpolate “opening” and “endgame” values to get a final
evaluation.5 Fruit’s is linear, while Rybka’s is a bit more complicated.6 After
this interpolation, Rybka gives a final 3-centipawn bonus for being on move. AtFruit has some code

to recognise draws.
Some of this is sub-
sumed into Rybka’s
material table.

the top level, Rybka also has a “lazy eval” which is not found in Fruit.

4 Identical ordering of root search procedures
The underlying factualities here are taken from Zach Wegner’s analysis that is
given at http://talkchess.com/forum/viewtopic.php?t=23118. Note that
the Fruit 2.1 code is spread across a number of function calls; it is unclear from
a disassembly whether this is the case in Rybka 1.0 Beta.

Table 1: Root search operations in Fruit and Rybka
Fruit 2.1 Rybka 1.0 Beta
generate legal moves generate legal moves
limit depth to 4 if #moves is 1 limit depth to 4 if #moves is 1
setup setjmp setup setjmp
list/board copy
reset/start timer start timer
increment date and date/depth table increment date and date/depth table
reset killers then history (sort init) reset killers then history
copy some Code()/UCI params
score/sort root list score/sort root list

5Fruit uses a “phase” 1:2:4 for BN:R:Q, and re-scales the 24 initial units to 256. With Rybka
we see only the material-table result, but the Fruit numbers match exactly upon scaling to 64.

6Rybka indexes a phase-based table 0-64 for this, but only 25 of these entries are ever used.

4

http://talkchess.com/forum/viewtopic.php?t=23118

Here are the comparative operations/ordering in Phalanx XXII (for example):
generate legal moves, init killers/history, increment Age, setup time limits, sort
root moves, start timer, return move if forced (there are various bits about
book/learning that I omit). Except for a few obvious constraints (move genera-
tion must precede scoring/sorting them), much of the above can be re-ordered.7

I have verified the above orderings myself, and in an appendix below I analyse
the final “iterative deepening” part of this function. This Fruit/Rybka overlapSee addendum D.1.

Whether any copy-
ing exceeds “just”
plagiarism is yet an
open question.

would already likely meet a “plagiarism” standard, for instance as used in the
detection of non-original work in academia and/or book publishing (note that
plagiarism is generally an ethical standard and not a legal one). There is also
the question of how important this item is from a chess-playing standpoint,
perhaps again viewing Fruit as a “manual” in some sense.

5 Common structure of PST computations

Another major point is the Piece-Square-Table (PST) computations, also known
as “static” values. These occur directly in the Fruit 2.1 code, while in Rybka we
only see the end result.8 Furthermore, there is a re-scaling (centipawns versus
3399th pawns), and Rybka also uses different weightings for some parameters.

However, the use of various specific arrays is apparent in both Fruit 2.1 and
Rybka 1.0 Beta. It is not immediately obvious how to judge their re-occurrence;
for instance, the use of [−2,−1, 0,+1,+1, 0,−1,−2] for a file weighting can
hardly be considered abnormal. The impetus of the evidence is that: the identi-
cal arrays are used by both Fruit 2.1 and Rybka 1.0 Beta for each piece, giving
a total of 8 or so matching arrays (some of the arrays are themselves re-used,
but the occurrence of each with a specific piece is an exact match in Fruit 2.1
and Rybka 1.0 Beta). There are minor differences, such as bonuses for central
pawns, and that the KingRank array is unimportant in Rybka 1.0 Beta (due to
the weighting for it being 0).9

5.1 The example of the knights

I give one example in fuller detail. For various reasons, the (White) knights
seem to be the best choice, as there are two components (file and rank), and
there are is only one minor variation (the a8/h8 squares). Below are the raw
PST knight values for Fruit 2.1 and Rybka 1.0 Beta in the opening, the latter
on the right. The co-incidence of these can be seen when we make a formulaic
representation (omitting the left-right symmetry).

7The “scoring” phases also contain the common element of a hash lookup to find a best
move, and it seems that not many other engines do this before starting the iterative deepening.

8I might stress that the fact that Fruit 2.1 visibly computes these while Rybka 1.0 Beta
just has an array is not really relevant for the discussion here. The content is of more import.

9Similarly one could note that Rybka 1.0 Beta has a score for pawns in the endgame and
queens in the opening, while in Fruit these are both just zero (the second is explicitly 0 in
the source code, while the first is not). The existence of these “zero weights” makes drawing
schematic diagrams a bit tricky, and prone to possible reliance on non-existent similarities.

5

Table 2: Fruit and Rybka White knight opening PST values
-135 -25 -15 -10 -10 -15 -25 -135
-20 -10 0 5 5 0 -10 -20
-5 5 15 20 20 15 5 -5
-5 5 15 20 20 15 5 -5

-10 0 10 15 15 10 0 -10
-20 -10 0 5 5 0 -10 -20
-35 -25 -15 -5 -5 -15 -25 -35
-50 -40 -30 -25 -25 -30 -40 -50

-5618 -1724 -1030 -683 -683 -1030 -1724 -5618
-1366 -672 22 369 369 22 -672 -1366
-314 380 1074 1421 1421 1074 380 -314
-325 369 1063 1410 1410 1063 369 -325
-683 11 705 1052 1052 705 11 -683

-1388 -694 0 347 347 0 -694 -1388
-2440 -1746 -1052 -705 -705 -1052 -1746 -2440
-3492 -2798 -2104 -1757 -1757 -2104 -2798 -3492

Table 3: Common PST schematic for White knights in the opening

−4x− 4x+ y − z −4x− 2x+ y −4x+ 0 + y −4x+ x+ y · · ·
−2x− 4x+ 2y −2x− 2x+ 2y −2x+ 0 + 2y −2x+ x+ 2y · · ·

0− 4x+ 3y 0− 2x+ 3y 0 + 0 + 3y 0 + x+ 3y · · ·
x− 4x+ 2y x− 2x+ 2y x+ 0 + 2y x+ x+ 2y · · ·
x− 4x+ y x− 2x+ y x+ 0 + y x+ x+ y · · ·
0− 4x+ 0 0− 2x+ 0 0 + 0 + 0 0 + x+ 0 · · ·
−2x− 4x− y −2x− 2x− y −2x+ 0− y −2x+ x− y · · ·
−4x− 4x− 2y −4x− 2x− 2y −4x+ 0− 2y −4x+ x− 2y · · ·

By using (x, y, z) = (5, 5, 100) we obtain the values for Fruit 2.1, and with
(x, y, z) = (347, 358, 3200), we obtain those for Rybka 1.0 Beta. All the numbers
(as opposed to letters) in the schematic appear in the Fruit 2.1 source code.

static const int KnightLine[8] = { -4, -2, +0, +1, +1, +0, -2, -4 };
static const int KnightRank[8] = { -2, -1, +0, +1, +2, +3, +2, +1 };

Other than the left-right symmetry in the KnightLine array, there is no partic-
ular reason for these numbers to be used. For instance, we could write αf and βr

for the file and rank numbers (where f ranges over files and r over ranks), and
the above schematic then looks like:

Table 4: PST schematic with Line/Rank arrays as parameters

α18x+ αahx+ β8y − z α18x+ αbgx+ β8y α18x+ αcfx+ β8y α18x+ αdex+ β8y · · ·
α27x+ αahx+ β7y α27x+ αbgx+ β7y α27x+ αcfx+ β7y α27x+ αdex+ β7y · · ·
α36x+ αahx+ β6y α36x+ αbgx+ β6y α36x+ αcfx+ β6y α36x+ αdex+ β6y · · ·
α45x+ αahx+ β5y α45x+ αbgx+ β5y α45x+ αcfx+ β5y α45x+ αdex+ β5y · · ·
α45x+ αahx+ β4y α45x+ αbgx+ β4y α45x+ αcfx+ β4y α45x+ αdex+ β4y · · ·
α36x+ αahx+ β3y α36x+ αbgx+ β3y α36x+ αcfx+ β3y α36x+ αdex+ β3y · · ·
α27x+ αahx+ β2y α27x+ αbgx+ β2y α27x+ αcfx+ β2y α27x+ αdex+ β2y · · ·
α18x+ αahx+ β1y α18x+ αbgx+ β1y α18x+ αcfx+ β1y α18x+ αdex+ β1y · · ·

Here we should have αah = α18, etc., but I rewrote the subscripts to indicate
which was a rank element, and which was a file element. Admittedly, this
formulation tends to stress the identical nature of the α and β choices made by
Fruit 2.1 and Rybka 1.0 Beta, but indeed, that is the whole point.

6

5.1.1 Magnitude of this evidence

The magnitude of this evidence can be weighed in various ways. It must be first
be noted that, while the use of these two KnightLine/KnightRank arrays is not
too strange, the identical arrays appear for every piece, and so mere coincidence
is unlikely. A second question is whether the arrays really matter, when the x
and y values could be said to have as much influence on the PST values.10 My
answer to that would be that there is no reason to keep this specific Rank/Line
scaling, and in a fully independent implementation of the Fruit “idea” of PST,
I would definitely expect there to be differences at some points.11 Finally, there
is the issue of whether these arrays could re-appear for “harmless” reasons, but
I really can’t say much more than I already have.

5.2 Diagrams for other pieces

For reasons of completeness, I give the schematic PST pictures for the otherSee addendum D.3
for perfunctory ex-
amples that show
these PST schemes
are not universal.

cases, noting the values chosen by Rybka 1.0 Beta and Fruit 2.1. For all of these,
the array choice is the same; the exception is the KingRank array in Rybka, for
which the value can be chosen as 0, so the contents of the array are meaningless.

5.2.1 Pawns PST

Table 5: Common PST schematic for White pawns

−3x −x 0 x · · ·
−3x −x 0 x · · ·
−3x −x 0 x · · ·
−3x −x 0 x? · · ·
−3x −x 0 x? · · ·
−3x −x 0 x? · · ·
−3x −x 0 x · · ·
−3x −x 0 x · · ·

Fruit 2.1 has x = 5 in the opening, with no endgame value (one can take x = 0).
Rybka 1.0 Beta has x = 181 in the opening, and x = −97 in the endgame. Fruit
adds 10 to d3/e3/d5/e5 and 20 to d4/e4, while Rybka adds 74 to d5/e5.

static const int PawnFile[8] = { -3, -1, +0, +1, +1, +0, -1, -3 };

My personal impression is that if the above were the totality of the evidence, it
would be dismissible (the grid does not look that odd), but when in the context
of everything else, it becomes more pressing. It can also be noted that many (if
not most) other chess programs have a rank-dependence in pawn PST.

10A silly counterpoint to this could be that the arrays contain 12 numbers (though not all
are really “independent”, as one fully expects the numbers to be higher at the centre than at
the edge), which is a lot more than the 3 values x, y, z.

11I might say that this is especially true given the re-scaling done by Rybka 1.0 Beta to
use 3399ths of a pawn rather than centipawns – why should the Rank/Line array values stay
small (single digits), and the x, y values grow? But this is perhaps trying to read minds. . .

7

For reference, the White pawn values in Rybka 1.0 Beta are loaded into the
256 bytes starting at location 0x64bdf0 in the 64-bit version, with the first 2
bytes for the opening value of a1, then 2 for the endgame value, then the same
for b1, c1, etc. After this comes Black pawns, then White knights, etc.

5.2.2 Knights PST endgame

Table 6: Common PST schematic for knights in the endgame

−4x− 4x −4x− 2x −4x+ 0 −4x+ x · · ·
−2x− 4x −2x− 2x −2x+ 0 −2x+ x · · ·

0− 4x 0− 2x 0 + 0 0 + x · · ·
x− 4x x− 2x x+ 0 x+ x · · ·
x− 4x x− 2x x+ 0 x+ x · · ·
0− 4x 0− 2x 0 + 0 0 + x · · ·
−2x− 4x −2x− 2x −2x+ 0 −2x+ x · · ·
−4x− 4x −4x− 2x −4x+ 0 −4x+ x · · ·

This is essentially the same as the knights in the opening, except that the rank
bonus (the y-variable of before) is absent, as is the a8/h8 penalty. Fruit 2.1
takes x = 5 while Rybka 1.0 Beta takes x = 56. As before, the main content
here is not the general “centralisation”, but the exact weightings from

static const int KnightLine[8] = { -4, -2, +0, +1, +1, +0, -2, -4 };

5.2.3 Bishops PST

Table 7: Common PST schematic for White bishops

−3x− 3x+ y −3x− x −3x+ 0 −3x+ x · · ·
−x− 3x −x− x+ y −x+ 0 −x+ x · · ·
0− 3x 0− x 0 + 0 + y 0 + x · · ·
x− 3x x− x x+ 0 x+ x+ y · · ·
x− 3x x− x x+ 0 x+ x+ y · · ·
0− 3x 0− x 0 + 0 + y 0 + x · · ·
−x− 3x −x− x+ y −x+ 0 −x+ x · · ·

−3x− 3x+ y − z −3x− x− z −3x+ 0− z −3x+ x− z · · ·

Fruit 2.1 has (x, y, z) = (2, 4, 10) in the opening and (x, y, z) = (3, 0, 0) in the
endgame. Rybka 1.0 Beta has (x, y, z) = (147, 378, 251) and (x, y, z) = (49, 0, 0).

The principal x-weighting is the same as with PawnFile/QueenLine/KingLine.

static const int BishopLine[8] = { -3, -1, +0, +1, +1, +0, -1, -3 };

One might expect some of these to be re-used, but the fact that Rybka 1.0
Beta and Fruit 2.1 use the exact same arrays in the exact same places makes
this of more import. Furthermore, Rybka 1.0 Beta has the same type of penal-
ties/bonuses (BackRank/Diagonal) as Fruit 2.1 in the opening (in fact, it might
have been better to make two separate grids for opening/endgame, to show that
both have y = z = 0 for the endgame values).

8

5.2.4 Rooks PST
Table 8: Common PST schematic for rooks (opening)

−2x −x 0 x · · ·
−2x −x 0 x · · ·
· · · · · · · · · · · · · · ·
−2x −x 0 x · · ·

This one is almost so mundane as to pass without comment. Fruit 2.1 has x = 3
and Rybka 1.0 Beta has x = 104. Neither has an endgame value (so x = 0).
static const int RookFile[8] = { -2, -1, +0, +1, +1, +0, -1, -2 };
Again the principal query would be as to why this RookFile was chosen in both,
as opposed to (say) re-using the PawnFile array instead.

5.2.5 Queens PST
Table 9: Common PST schematic for White queens

−3x− 3x −3x− x −3x+ 0 −3x+ x · · ·
−x− 3x −x− x −x+ 0 −x+ x · · ·
0− 3x 0− x 0 + 0 0 + x · · ·
x− 3x x− x x+ 0 x+ x · · ·
x− 3x x− x x+ 0 x+ x · · ·
0− 3x 0− x 0 + 0 0 + x · · ·
−x− 3x −x− x −x+ 0 −x+ x · · ·

−3x− 3x− z −3x− x− z −3x+ 0− z −3x+ x− z · · ·

This one is a bit tricky, as Fruit has a zero value for QueenCentreOpening,
though it is explicitly in the code. And again (see bishops) there is a BackRank
penalty only in the opening (in both). Fruit 2.1 has (x, z) = (0, 5) in the opening
and (x, z) = (4, 0) in the endgame, while Rybka 1.0 Beta has (x, z) = (98, 201)
in the opening and (x, z) = (108, 0) in the endgame. Again having a separate
grid for the endgame might make the BackRank penalty more clear.

static const int QueenLine[8] = { -3, -1, +0, +1, +1, +0, -1, -3 };

5.2.6 Kings PST
Table 10: Common PST schematic for White kings (opening)

3x− 7y 4x− 7y 2x− 7y 0− 7y · · ·
3x− 6y 4x− 6y 2x− 6y 0− 6y · · ·
3x− 5y 4x− 5y 2x− 5y 0− 5y · · ·
3x− 4y 4x− 4y 2x− 4y 0− 4y · · ·
3x− 3y 4x− 3y 2x− 3y 0− 3y · · ·
3x− 2y 4x− 2y 2x− 2y 0− 2y · · ·
3x+ 0 4x+ 0 2x+ 0 0 + 0 · · ·
3x+ y 4x+ y 2x+ y 0 + y · · ·

Again there is a somewhat of a stretch here in making a common schematic,
as Rybka 1.0 Beta doesn’t have the adjustment for KingRankOpening, so the
y-variable of above only appears in Fruit 2.1. However, the file array does match.

9

static const int KingFile[8] = { +3, +4, +2, +0, +0, +2, +4, +3 };

Fruit 2.1 has (x, y) = (10, 10) and Rybka 1.0 Beta has (x, y) = (469, 0).
Both the schematic for the endgame and the KingLine array used for it are

the same as with bishops and queens above (based on centralisation). Fruit 2.1
has x = 12 and Rybka 1.0 Beta has x = 401.
static const int KingLine[8] = { -3, -1, +0, +1, +1, +0, -1, -3 };

6 Things of lesser importance

6.1 Data structures with hashing

The first 8 bytes of the 16-byte hash structure in Rybka 1.0 Beta and Fruit 2.1
are used in the same manner.12 I can find no other engines that imitate this –
even Fruit 1.0 differs (having a 64-bit lock). The common parts are:

a 32-bit lock, 2 bytes for the move, 1 byte for depth, then 1 byte for date.
To choose a random comparison, Faile orders these as [hash, depth, score, move]See addendum C.3

about the other 8
bytes.

with differing bit widths. There is also an atypical commonality in the use of
both lower/upper bounds in a PVS engine (though see Appendix B.3 below).

6.2 Use of a quad()-like function for passed pawns

6.2.1 The quad() function in Fruit 2.1

This is the quad() function in Fruit 2.1, with ASSERTs stripped out, and the
Bonus values made explicit, with my comment about percentage of 256.

Bonus[Rank4] = 26; // 10.15625%
Bonus[Rank5] = 77; // 30.078125%
Bonus[Rank6] = 154; // 60.15625%
Bonus[Rank7] = 256; // 100%

int quad(int y_min, int y_max, int x)
{return y_min + ((y_max - y_min) * Bonus[x] + 128) / 256;}

As can be seen, this function uses approximately a 10-30-60-100 weighting (es-
sentially a quadratic fit), given instead by “hexapawns” as 26-77-154-256. Also,
the function rounds (with the +128) to the nearest integer (rather than trunc-
tating) in the division by 256. The only difference between the values that the
quad() function returns and those of the arrays included in Rybka 1.0 Beta are
that the latter uses truncation rather than rounding.

Fruit 2.1 uses quad() to give a rank-based bonus for a passed or candidate
pawn. For each such pawn, the quad() function is called and returns a score to
be applied in the evaluation.

static const int PassedOpeningMin = 10, PassedOpeningMax = 70;
static const int PassedEndgameMin = 20, PassedEndgameMax = 140;
static const int CandidateOpeningMin = 5, CandidateOpeningMax = 55;
static const int CandidateEndgameMin = 10, CandidateEndgameMax = 110;

12Rybka 1.0 Beta has 4 hashing functions (64-bit): 0x40c2a0, 0x40c3e0, 0x40c520, 0x40c640.

10

As noted above, Fruit 2.1 uses a constant multiplier for attacker/defender dis-
tances to a passed pawn, while Rybka 1.0 Beta uses a quad()-like function
dependent on the rank.

static const int AttackerDistance = 5; // always 5 in Fruit 2.1
static const int DefenderDistance = 20; // always 20 in Fruit 2.1

Fruit 2.1 also has 2 other constant bonuses (less important here, but listed for the
sake of completeness), the first of which (UnstoppablePasser) is also a constant
(25600) in Rybka 1.0 Beta, while for the second one, Rybka 1.0 Beta divides it
up into more cases (PassedUnblockedOwn, PassedUnblockedOpp, PassedFree),
each of which is given a quad()-style weighting based on rank.

static const int UnstoppablePasser = 800; // always 800 in Fruit 2.1
static const int FreePasser = 60; // always 60 in Fruit 2.1

Not all of these terms have exactly the same meaning in Rybka 1.0 Beta, and
discussing any differences would diverge from my focus on the re-use of the
quad() function. Perhaps the main difference is with FreePasser, as to whether
the pawn’s path is met by a friendly or enemy piece, which uses SEE in Fruit
and “attacks” bitboards in Rybka, and further is split into 3 parts in Rybka.

6.2.2 Passed pawn numerology in Rybka 1.0 Beta

As noted above, Fruit 2.1 calls quad() every time, while one can note that
the values are only dependent on the rank, and then use pre-computation to
get array values as in Rybka 1.0 Beta. The elements of the arrays in Rybka
1.0 Beta are not direct outputs of the quad() function in Fruit 2.1, but up to
rounding (note the “+128” in the code above), this is indeed the case.

Here are the array-values in Rybka 1.0 Beta, indexed by rank:
int PassedOpening[8] = { 0, 0, 0, 489, 1450, 2900, 4821, 4821 };
int PassedEndgame[8] = { 146, 146, 146, 336, 709, 1273, 2020, 2020 };
int PassedUnblockedOwn[8] = { 0, 0, 0, 26, 78, 157, 262, 262 };
int PassedUnblockedOpp[8] = { 0, 0, 0, 133, 394, 788, 1311, 1311 };
int PassedFree[8] = { 0, 0, 0, 101, 300, 601, 1000, 1000 };
int PassedAttDistance[8] = { 0, 0, 0, 66, 195, 391, 650, 650 };
int PassedDefDistance[8] = { 0, 0, 0, 131, 389, 779, 1295, 1295 };
int CandidateOpening[8] = { 0, 0, 0, 382, 1131, 2263, 3763, 3763 };
int CandidateEndgame[8] = { 18, 18, 18, 181, 501, 985, 1626, 1626 };

In the 64-bit version, see the 56 bytes at 0x660f90 and the 16 bytes at 0x423b40.
Perhaps the most obvious “sore-thumb” is the PassedFree array, which looks
mighty close to 100-300-600-1000, but is off-by-one in two entries. Indeed, this
is accounted for exactly by the “hexapawns” rescaling. Here are inputs to a
quad()-like function (with truncation) to produce the Rybka 1.0 Beta arrays.

PassedOpening: Min = 0, Max = 4821
PassedEndgame: Min = 146, Max = 2020
PassedUnblockedOwn: Min = 0, Max = 262
PassedUnblockedOpp: Min = 0, Max = 1311

11

PassedFree: Min = 0, Max = 1000
PassedAttDistance: Min = 0, Max = 650
PassedDefDistance: Min = 0, Max = 1295
CandidateOpening: Min = 0, Max = 3763
CandidateEndgame: Min = 18, Max = 1626

6.2.3 Impact of this evidence

It is fairly clear (cf. the PassedFree array) that the values in Rybka 1.0 Beta
were generated automatically, and not by hand. While a 10-30-60-100 parabolicSee addendum C.4

for an example of a
different scaling.

scaling might reasonably be considered an “idea” to re-use, the coincidence of a
hexapawn-variant of a quad()-like function makes the issue trickier to navigate.

There is also the question of whether the re-use of quad() is really all that
important. The Rybka choice of values for PassedOpening (and others) is not
too similar to that of Fruit, and the splitting of the bonuses for a passed pawn
makes the Rybka method differ from that of Fruit in any event. As with the
PST comparison, it seems that there is a structural similarity between Fruit and
Rybka, and the question of “originality” therein allows multiple approaches.

Finally, while the quirky 256-based scaling is done for a reason in Fruit 2.1
(as the quad() function is called every time, perhaps general integer division
would be too slow), it is a bit inscrutable to me why the natural 10-30-60-100
scaling would not be preferable when the array is pre-computed as in Rybka.

6.3 UCI parsing

The final topic is the subject of UCI parsing. Some of this is not precisely “chess-
related”, though there is overlap with time management issues, and some of this
could also be useful for GPL purposes with respect to code copying.

In this section, I use two “decompilations” from other people. Part of this is
to show that others who have studied the issue have come to a similar conclusion.
Such decompilations can be tendentious, especially if one chooses to use Fruit-
like variable names when re-casting into a higher-level language.

6.3.1 Parsing the “position” string

One example of copying seems to be in how Rybka parses the “position” string.
The Fruit code has various oddities, such as

moves[-1] = ’\0’; // dirty, but so is UCI

A disassembly of the Rybka 1.0 Beta code (below) will show a similar hack.
Here is the stripped-down Fruit code from parse position() in protocol.cpp:

fen = strstr(string,"fen ");
moves = strstr(string,"moves ");
if (fen != NULL)
{ if (moves != NULL) { // "moves" present

moves[-1] = ’\0’; // dirty, but so is UCI
board_from_fen(SearchInput->board,fen+4); // CHANGE ME

}

12

// else use startpos -- omitted here
if (moves != NULL) // "moves" present
{ ptr = moves + 6; // aside: the "+6" here is a useful ASM locator

while (*ptr != ’\0’) // until string is terminated
{ [...] // code to get the move_string, advancing ptr

move = move_from_string(move_string,SearchInput->board);
move_do(SearchInput->board,move,undo);
while (*ptr == ’ ’) ptr++; // eliminates spaces

}
}

A 32-bit Rybka 1.0 Beta decompilation by Franklin Titus, with my comments:13

int __usercall sub_4092E0<eax>(const char *a1<eax>)
{ char *v1; // esi@1
const char *v2; // esi@1
char *v3; // edi@1
int v4, v5; // esi@6, eax@7
v2 = a1;
v3 = strstr(a1, "fen");
v1 = strstr(v2, "moves");
sub_403490(); // board_from_fen(), for startpos
if (v3) // fen != NULL
{ if (v1) // moves != NULL

*(v1 - 1) = 0; // moves[-1] = 0, would the compiler do this?
sub_403490(); // board_from_fen(FEN) -- maybe sub_403490(v3)?

}
if (v1) // "moves" present
{ v4 = (v1 + 6); // ptr = moves + 6
while (*v4) // until string is terminated
{ v5 = sub_40AAF0(v4); // some code to get the move from the string
sub_40ABC0(v5); // move_do_UCI(move) -- in search, prom bits differ
v4 += 5; // Fruit uses *ptr++ for each character
if (!*(v4 - 1)) // the -1 here is likely compiler-based
break; // i.e. v4[4] is the same as (v4 + 5)[-1]

for (; *v4 == 32; ++v4) {} // eliminates spaces, needed with proms
}

}
return sub_401100(); // clear various arrays, general bookkeeping

}

Some of this formulaic, and the most interesting part is likely that moves[-1]=0
reappears in the Rybka 1.0 Beta code; in the Fruit 2.1 code it ensures the FEN
string proper is NUL-terminated, but this is not strictly necessary. The Rybka
version could, however, be a compiler optimisation of fen[moves-fen-1]=0,
which looks a bit better in C. In any case, the fact that “something is done”
here that (in the end) serves no purpose makes this a mentionable commonality.

13There are a few minor errors, but I stick close to the original. My 64-bit version is here.

13

http://www.open-chess.org/viewtopic.php?f=3&t=301&p=2788#p2790
http://www.open-chess.org/download/file.php?id=302

6.3.2 Time management

In this section, I largely refer to Rick Fadden’s 32-bit Rybka 1.0 Beta disassembly
efforts14 at http://www.talkchess.com/forum/viewtopic.php?p=187290.

The first item to mention is that it already seems not completely natural to
place the time management code at the end of the “go” parser as done in both
Fruit 2.1 and Rybka 1.0 Beta. Both contain “white/black” selection code as a
separator between the “go” parsing proper and the time management code, for
Rybka 1.0 Beta as

if ((Board->turn) == 0) { time = wtime; inc = winc; } // Fadden’s Rybka
else { time = btime; inc = binc; } // decompilation

compared to Fruit’s

if (COLOUR_IS_WHITE(SearchInput->board->turn)) {
time = wtime;
inc = winc;

} else {
time = btime;
inc = binc;

} // Fruit code

The subsequent lines in Fadden’s Rybka 1.0 Beta decompilation have:

// Rybka compares movetime with a double precision value: 0.0
if (movetime >= 0.0) {
time_limit_1 = 5 * movetime;
time_limit_2 = 1000 * movetime;

} else if (time > 0) {
time_max = time - 5000;
alloc = (time_max + inc * (movestogo - 1)) / movestogo;
if (alloc >= time_max) alloc = time_max;
time_limit_1 = alloc;
alloc = (time_max + inc * (movestogo - 1)) / 2;
if (alloc < time_limit_1) alloc = time_limit_1;
if (alloc > time_max) alloc = time_max;
time_limit_2 = alloc;

}

As noted by Zach Wegner and others, the comparison with a floating-point value
by Rybka 1.0 Beta is simply bizarre in itself (it appears in both the 32-bit and
64-bit versions), and only when put side-by-side with the Fruit code (for which
it makes sense) does the genesis of this come to light.

14I find Fadden’s decompilation to be very precise. For instance, he keeps all the variables
(such as btime/wtime/binc/winc) in the same order as in the ASM code. There is an alter-
native disassembly available (link) which is lacking in such necessities, and even goes so far
as to re-arrange the parsing of the wtime/winc/btime/binc elements in Rybka to match the
alphabetical order of Fruit.

14

http://www.talkchess.com/forum/viewtopic.php?p=187290
http://ct_chess.pagesperso-orange.fr/Fruit-Rybka/start_go.html

Here is the Fruit code for this (see parse go() in protocol.cpp):
if (movetime >= 0.0) {

SearchInput->time_is_limited = true;
SearchInput->time_limit_1 = movetime * 5.0; // HACK to avoid early exit
SearchInput->time_limit_2 = movetime;

} else if (time >= 0.0) {
time_max = time * 0.95 - 1.0;
if (time_max < 0.0) time_max = 0.0;
SearchInput->time_is_limited = true;
alloc = (time_max + inc * double(movestogo-1)) / double(movestogo);
alloc *= (option_get_bool("Ponder") ? PonderRatio : NormalRatio);
if (alloc > time_max) alloc = time_max;
SearchInput->time_limit_1 = alloc;
alloc = (time_max + inc * double(movestogo-1)) * 0.5;
if (alloc < SearchInput->time_limit_1) alloc = SearchInput->time_limit_1;
if (alloc > time_max) alloc = time_max;
SearchInput->time_limit_2 = alloc;

}

The multiplication of movetime by 5 to get time limit 1 is another common
element, while Zach Wegner has noted that the multiplication by 1000 with
time limit 2 actually seems like a bug that prevents Rybka 1.0 Beta from
properly handling a UCI command like “go movetime 60000” in certain cases.

There are a few other atypical similarities in the respective UCI parsing
routines (e.g., incremental use of strtok), but I won’t discuss them here, and
just leave Fadden’s disassembly/decompilation to suffice for a general sense.

However, as a final specific similarity for this section, I will mention the
concluding block of code of this “go” parser. There is a significant overlap in
how Fruit 2.1 and Rybka 1.0 Beta handle the difficulty of “delaying” sending a
best move when in “infinite” or “ponder” mode.15 Here is the Fruit 2.1 code:

if (infinite || ponder) SearchInput->infinite = true;
ASSERT(!Searching);
ASSERT(!Delay);
Searching = true;
Infinite = infinite || ponder;
Delay = false;
search();
search_update_current();
ASSERT(Searching);
ASSERT(!Delay);
Searching = false;
Delay = Infinite;
if (!Delay) send_best_move();

15Rybka 1.0 Beta has no Ponder UCI option per se, but does send a ponder token when
reporting bestmove, and also correctly parses go strings which include a ponder token. Indeed,
the UCI protocol notes that the Ponder option is largely a way for the GUI to notify the engine
about pondering ahead of time, so that the engine can modify its time management if desired.

15

Here is the comparative Rybka code I obtained from a 64-bit disassembly.16

0x40702e: test %r15b,%r15b # r15 is "infinite"
0x40704d: jne 0x407054
0x40704f: test %r13b,%r13b # r13 is "ponder"
0x407052: je 0x407063* [0x40705b] # if either is true
0x407054: movb $0x1,0x2652d1(%rip) # 0x66c32c SearchInput->Infinite = true
0x407063* movb $0x1,0x262677(%rip) # 0x6696e1, set Searching = true
0x40705b: test %r15b,%r15b # check "infinite" again
0x40706a: jne 0x40707a
0x40706c: test %r13b,%r13b # check "ponder" again
0x40706f: jne 0x40707a # if both false,
0x407071: mov %r13b,0x26266a(%rip) # 0x6696e2, set Infinite = false
0x407078: jmp 0x407081 # else
0x40707a: movb $0x1,0x262661(%rip) # 0x6696e2, set Infinite = true
0x407081: movb $0x0,0x26265b(%rip) # 0x6696e3 set Delay = false
0x407088: callq 0x408f90 # call the search function
0x40708d: movzbl 0x26264e(%rip),%eax # 0x6696e2 load Infinite variable
0x40709b: movb $0x0,0x26263f(%rip) # 0x6696e1 set Searching = false
0x4070a2: mov %al,0x26263b(%rip) # 0x6696e3 set Delay = Infinite
0x407094* test %al,%al # if Infinite is true
0x4070a8: jne 0x4070af # then don’t
0x4070aa: callq 0x406aa0 # call send_best_move()

Note in particular that (infinite || ponder) gets computed twice in both.
Also, the operations with Searching, Infinite, and Delay are ordered the
same (as are their variable allocations). Finally, setting Delay to be “false” can
be seen as redundant in Fruit, as three lines above it was ASSERTed to be so.

7 Summary of evidence
This document has highlighted a number of places where Rybka 1.0 Beta can
be said to have over-stretched an “originality” barrier with respect to Fruit 2.1.
These include a borrowing of arrays in PST, a peculiar match in data structures
for hashing, a wholesale re-use of evaluation features, and a repetition of the
same ordering of operations in root search. There is furthermore a re-appearance
of a 26-77-154-256 scaling rather than the more natural 10-30-60-100, and some
specific examples of “code copying” from the UCI parsing.

The first appendix below gives another example of “code copying” (from
iterative deepening at the end of root search), while the second appendix tries
to determine whether later Rybka versions have remedied the above problems,
and draws together some related issues.

Mark Watkins, mwatkins@e-mile.co.uk
16I omit various instructions regarding register preparation for the function-call exit, and

also re-ordered 0x407063 and 0x407094 to better emphasize the if-then logic in comparisions.

16

A Root search analysis: iterative deepening

This appendix is a Fruit/Rybka comparison for a specific “chunk” of code. It is
my hope that it will exemplify various aspects of the similarities and differences.
I first give the Fruit 2.1 code, then the Rybka 1.0 Beta disassembly, and finally
a C++ translation of the latter. The code is the iterative deepening at the end
of root search. The Fruit 2.1 code is at the end of search() in search.cpp.

The Fruit code, reformatted, ASSERTs removed, with applicable comments:
for (depth = 1; depth < DepthMax; depth++) // DepthMax is 64
{ if (DispDepthStart) send("info depth %d",depth); // DispDepthStart is true
SearchRoot->bad_1 = false;
SearchRoot->change = false;
board_copy(SearchCurrent->board,SearchInput->board);
if (UseShortSearch && depth <= ShortSearchDepth) // UseShortSearch is true
search_full_root(SearchRoot->list,SearchCurrent->board,depth,SearchShort);
else
search_full_root(SearchRoot->list,SearchCurrent->board,depth,SearchNormal);
search_update_current();
if (DispDepthEnd) send("[...]"); // a complicated construct, omitted here
if (depth >= 1) SearchInfo->can_stop = true;
if (depth == 1 && LIST_SIZE(SearchRoot->list) >= 2

&& LIST_VALUE(SearchRoot->list,0) >=
LIST_VALUE(SearchRoot->list,1) + EasyThreshold) // this is 150

SearchRoot->easy = true;
if (UseBad && depth > 1) // UseBad is true
{ SearchRoot->bad_2 = SearchRoot->bad_1;
SearchRoot->bad_1 = false; }

SearchRoot->last_value = SearchBest->value;
if (SearchInput->depth_is_limited && depth >= SearchInput->depth_limit)
SearchRoot->flag = true;
if (SearchInput->time_is_limited

&& SearchCurrent->time >= SearchInput->time_limit_1
&& !SearchRoot->bad_2)

SearchRoot->flag = true;
if (UseEasy && SearchInput->time_is_limited // UseEasy is true

&& SearchCurrent->time >= SearchInput->time_limit_1 * EasyRatio // 0.20
&& SearchRoot->easy)

SearchRoot->flag = true;
if (UseEarly && SearchInput->time_is_limited // UseEarly is true

&& SearchCurrent->time >= SearchInput->time_limit_1 * EarlyRatio // 0.60
&& !SearchRoot->bad_2 && !SearchRoot->change)

SearchRoot->flag = true;
if (SearchInfo->can_stop

&& (SearchInfo->stop || (SearchRoot->flag && !SearchInput->infinite)))
break;

}

17

Here is a commented disassembly from the Rybka 1.0 Beta 64-bit version:
0x4095a5: mov $0x1,%esi # %esi will be equal to 1 throughout
0x4095aa: mov %esi,%ebx
0x4095b0: cmp $0x5,%ebx # compare depth to 5
0x4095b3: jb 0x4095c4 # if at least 5
0x4095b5: lea -0x2(%rbx),%edx then subtract 2 before...
0x4095b8: lea 0x25af79(%rip),%rcx # 0x664538 ["info depth" string]
0x4095bf: callq 0x40d0b0 # ...printing the "info depth" string
0x4095c4: mov %ebx,%ecx # copy depth to %ecx reg for func call
0x4095c6: movb $0x0,0x262e81(%rip) # 0x66c44e set "change" to false
0x4095cd: movb $0x0,0x262e78(%rip) # 0x66c44c set "bad_1" to false
0x4095d4: callq 0x40ba70 # call search_full_root(ecx) [ecx=depth]
0x4095d9: callq 0x4070c0 # some sort of update function
0x4095de: mov 0x26706f(%rip),%r11d # 0x670654, get score
0x4095e5: cmp $0xffff8300,%r11d # fiddle around
0x4095ec: jle 0x4095fe # ...
0x4095ee: cmp $0x7d00,%r11d # with mate scores
0x4095f5: movzbl 0x262e54(%rip),%edx # 0x66c450 load "flag"
0x4095fc: jl 0x409601 # if mate score,
0x4095fe: mov %sil,%dl # set "flag" to true (esi is always 1)
0x409601: cmp %esi,%ebx # compare depth (%ebx) to 1
0x409603: jne 0x409631 # if depth == 1
0x409605: cmpl $0x0,0x267058(%rip) # 0x670664 think this is RML[1]
0x40960c: je 0x40962f # if only one legal move, skip next
0x40960e: movzbl 0x262e3a(%rip),%ecx # 0x66c44f "easy"
0x409615: mov 0x267449(%rip),%eax # 0x670a64 (value of move 1)
0x40961b: add $0x96,%eax # EasyThreshold of 150 [as in Fruit]
0x409620: cmp %eax,0x26743a(%rip) # 0x670a60 (value of move 0)
0x409626: cmovae %esi,%ecx # if move values differ by enough
0x409629: mov %cl,0x262e20(%rip) # 0x66c44f set "easy" as true
0x40962f: cmp %esi,%ebx # if depth > 1
0x409631: jbe 0x40964d* [0x409647]
0x409633: movzbl 0x262e12(%rip),%eax # 0x66c44c load old bad_1
0x40963a: movb $0x0,0x262e0b(%rip) # 0x66c44c bad_1 = false
0x409641: mov %al,0x262e06(%rip) # 0x66c44d bad_2 = (previous) bad_1
0x40964d* movzbl %dl,%eax # %dl: 1@4095fe (mate), "flag"@4095f5
0x409650* mov %r11d,0x262df1(%rip) # 0x66c448 last_value = score
0x409647: cmp 0x262cdb(%rip),%ebx # 0x66c328 see if depth>=depth_limit
0x409657: cmovae %esi,%eax # if depth >= depth_limit
0x40965a: mov %al,0x262df0(%rip) # 0x66c450 then "flag" is true
0x409666: mov 0x262cb3(%rip),%r8d # 0x66c320 load SearchInput->time_limit_1
0x40966d: movzbl 0x262dd8(%rip),%r9d # 0x66c44d load bad_2
0x409660* callq *0x139ca(%rip) # 0x41d030 GetTickCount -> %eax
0x409675: mov %eax,%r11d
0x40967c* sub 0x262db5(%rip),%r11d # 0x66c438 (subtract StartTime)

18

0x409678: lea (%r8,%r8,1),%ecx # compute 3 * time_limit_1
0x409683: mov $0xaaaaaaab,%eax # then mult by 2/3
0x409688: mul %ecx # (result goes in edx with mul here)
0x40968a: shr %edx # and div by 2 ... hmm = time_limit_1 ?
0x40968c: cmp %edx,%r11d # compare to time taken
0x40968f: jb 0x4096a6 # if small, ignore next
0x409691: movzbl 0x262db8(%rip),%ecx # 0x66c450 "flag"
0x409698: test %r9b,%r9b # if "bad_2" is false
0x40969b: cmove %esi,%ecx # ecx = 1 (esi is always 1)
0x40969e: mov %cl,0x262dac(%rip) # 0x66c450 store ecx in "flag"
0x4096a4: jmp 0x4096ac
0x4096a6: mov 0x262da4(%rip),%cl # 0x66c450 (reload "flag")
0x4096ac: mov $0xaaaaaaab,%eax
0x4096b1: mul %r8d # mult time_limit_1 by 2/3
0x4096b4: shr $0x2,%edx # and div by 4
0x4096b7: cmp %edx,%r11d # compare to time taken
0x4096ba: jb 0x4096d1 # if small, ignore next
0x4096bc: cmpb $0x0,0x262d8c(%rip) # 0x66c44f see if "easy"
0x4096c3: movzbl %cl,%eax # if not "easy", then eax is "flag"
0x4096c6: cmovne %esi,%eax # if it is "easy", then eax is true
0x4096c9: mov %al,%cl
0x4096cb: mov %al,0x262d7f(%rip) # 0x66c450 store eax in "flag"
0x4096d1: shr %r8d # time_limit_1 divided by 2
0x4096d4: cmp %r8d,%r11d # compare to time taken
0x4096d7: jb 0x4096f3 # if small, ignore next
0x4096d9: test %r9b,%r9b # if "bad_2" is true
0x4096dc: jne 0x4096f3 # then ignore next
0x4096de: cmp %r9b,0x262d69(%rip) # 0x66c44e "change", see if false
0x4096e5: movzbl %cl,%eax # if not, then eax is "flag"
0x4096e8: cmove %esi,%eax # if "change" is false, eax is true
0x4096eb: mov %al,%cl
0x4096ed: mov %al,0x262d5d(%rip) # 0x66c450 store eax in "flag"
0x4096f3: cmpb $0x0,0x262d36(%rip) # 0x66c430 see if "stop" is true
0x4096fa: jne 0x409714 # if so, then exit this function
0x4096fc: test %cl,%cl # see if "flag" is true
0x4096fe: je 0x409709 # if so
0x409700: cmpb $0x0,0x262c25(%rip) # 0x66c32c and SearchInput->infinite
0x409707: je 0x409714 # is false, then exit this function
0x409709: add %esi,%ebx # increment depth (%esi is 1)
0x40970b: cmp $0x48,%ebx # if depth < 72
0x40970e: jb 0x4095b0 # then loop

The asterisks here denote instructions that I have re-ordered, typically when
the ASM code starts laying the groundwork for the next high-level operation
prior to the completion of the previous.

19

Here is a translation into a higher-level language, with Fruit as a template.
for (depth = 1; depth < 72; depth++)
{ if (depth >= 5) printf("info depth %d\n",depth-2);
change = false;
bad_1 = false; // order is switched from Fruit -- might be the compiler
search_full_root(depth); // yields "score" in a global var
some_sort_of_update_function();
if (score <= -32000 || score >= 32000) // mate scores
flag = true;
if (depth == 1 && RootMoveList[1].move != MOVE_NONE &&

RootMoveList[0].value >= RootMoveList[1].value + 150) // 409601-40962f
easy = true;
if (depth > 1) // 409631-409641
{bad_2 = bad_1;
bad_1 = false;}

last_value = score;
if (depth >= depth_limit) // 409647
flag = true;
TimeUsed = GetTickCount() - StartTime;
if ((3*time_limit_1)/3 <= TimeUsed && !bad_2) // 409691, has mult/div by 3
flag = true;
if ((time_limit_1)/6 <= TimeUsed && easy) // 20% in Fruit
flag = true;
if ((time_limit_1)/2 <= TimeUsed && !bad_2 && !change) // 60% in Fruit
flag = true;
if (stop || (flag && !SearchInput->infinite))
break;

}

As can be seen, there are various differences, but (particularly in the ordering of
various parts) there still seems to be more similarities than one might expect.17

It can also be noted that the 6 variables in Rybka 1.0 Beta here are allocated
in exactly the same order as in the comparative Fruit 2.1 code (see search.h):
struct search_root_t {
[...] // Rybka location

int last_value; // 0x66c448
bool bad_1; // 0x66c44c
bool bad_2; // 0x66c44d
bool change; // 0x66c44e
bool easy; // 0x66c44f
bool flag; // 0x66c450

};

17For instance, all the settings of flag can be re-ordered, as can the parts of the compound &&

statements. Another point is that condition “depth > 1” (before the bad indicators are
updated) looks somewhat superfluous and/or unnecessary. At a higher level, an alternative
implementation is: near the top, break when “stop” is true and continue when “infinite” is;
then “flag” is unneeded, as break can instead be used when the various conditions are true.

20

B Other comments

In this appendix, I pull together some other comments I have made regarding
Rybka and Fruit. In particular, as this document is largely aimed at listing
similarities, it might be good to list some differences also.

B.1 Principal differences for Rybka 1.0 Beta and Fruit 2.1

Among the more well-known differences of Rybka 1.0 Beta are the use of bit-
boards (rather than a mailbox representation) and the extensive material im-
balance table. Rybka 1.0 Beta also does not have the history-based reductions
made prominent by Fruit 2.1, but rather a more vanilla LMR approach that con-
siders only the location in the move list. The weightings of evaluation features
are also of course different (and perhaps more well-tuned).

Except for the issues listed in §4 above, the search routines of Rybka 1.0 Beta
and Fruit 2.1 do not seem to me to be more similar than I would expect for
two PVS engines. Rybka 1.0 Beta seems not so mature, e.g., simply announcing
mate and not trying to minimise the distance to it. The principal “new idea”
in Rybka 1.0 Beta seems to me to be the loosening of the stringent cutoff values
for futility previously used in the AEL pruning of Heinz.

These add up to about a 75-100 Elo improvement on a 32-bit machine,
comparable to the amount that Fruit itself gained over the second half of 2005.

B.2 Later versions of Rybka

I have not checked every version of Rybka, but have verified that the evaluation
function in Rybka 2.3.2a is substantially the same as in Rybka 1.0 Beta. Much
of the numerology is still extant, and only a few features have changed.18 The
re-writing of the evaluation function in Rybka 3 (by Larry Kaufman) has likely
removed much of any complaint here.

I have not bothered to see when/if the UCI parsing was changed, though
a crude check19 finds code similarities in Rybka 2.3.2a (June 2007). The use
of “0.0” in time management is also still extant in Rybka 2.3.2a.20 The hash
structure looks to be the same in Rybka 2.3 as in Rybka 1.0 Beta (the first 8
bytes as in Section 6.1), but was changed to a 64-bit format21 in Rybka 2.3.1,
and again modified slightly in Rybka 2.3.2a.

For the search, I have not checked too much, but my impression is that the
search was already being modified in the various Rybka 1.01 Betas (there were 13

18For instance, knight mobility was removed, and pawn “anti-mobility” was added.
19I searched for adding 6 (see ptr = moves + 6), and looked at surrounding code segments.

The desired instruction appears at 0x550bee in Rybka 2.3.2a (single-cpu 64-bit version), with
a nearby lea usage having offset of -0x188 as with Rybka 1.0 Beta. Similarly at 0x4c606b in
Rybka 3, where nearby at 0x4c6031 one finds the “moves[-1]=0” instruction.

20I searched for cvtsi2sd with a 32-bit input. It appears at 0x551ef5 in the 64-bit version
of Rybka 2.3.2a. Such an instruction appears multiple times in Rybka 3, and it seems to me
that the one that corresponds to this is at 0x4c8759.

21Rajlich mentioned (link) that there was some “significant” problem with hashing in
Rybka 2.3 (no word about previous versions), which might be that 128-bit hash entries were
not modified atomically, so as to cause occasional problems in SMP mode.

21

http://rybkaforum.net/cgi-bin/rybkaforum/topic_show.pl?pid=3794

iterations of this in all, with Rybka 1.1 being released on March 16, 2006). The
use of setjmp in a 64-bit compilation can be tracked fairly well via the fnstcw
instruction in an ASM dump (especially with a relative address involving 0x5c),
and then by back-tracking the calling function (possibly in a debugger), one can
attempt to identify the root search. Even in Rybka 2.3.2a a few similarities
with the Rybka 1.0 Beta code seem to remain, but overall a comparison as in
Table 1 would not be so conclusive. Some of the changes already appear in
Rybka 1.01 (the updating of the hash date/depth table and the resetting of
killers/history are moved to near the beginning, for instance). Similarly, the
iterative deepening code22 has been progressively modified (e.g., to consider
mate scores), but various Fruit remnants seem detectable if such parentage is
suspected, particularly with the flag-based implementation.

B.3 The question of a re-write

Another question is whether Rybka 1.0 Beta is to be considered as a “suc-
cessor” of earlier Rybka versions, as opposed to being a complete re-write.See addendum C.5

for much more
about these pre-
Beta Rybkas; for
instance, nontrivial
amounts of Crafty
were copied.

A version from April 2004 called Rybka 1.5.32 participated in Chess War V
(Olivier Deville) and Le Système du Suisse Saison n°3 (Claude Dubois). I have
been unable to obtain a copy of this version, or any other pre-Beta versions.

Rybka 1.5.32 is a UCI engine, which should seem to make any copying of the
Fruit UCI and/or time management code rather unnecessary. Rybka 1.5.32 also
played two rook underpromotions in approximately 60 games, whereas Rybka
1.0 Beta was (somewhat curiously) not able to play underpromotions.

On the other hand, Rajlich fully acknowledges that Rybka went through
a lot of twists and turns in the early years, especially as he started with an
MTD(f)-based search rather than PVS.23 It remains unclear, however, why
underpromotions would disappear, or why the UCI parsing and time manage-
ment would follow the Fruit template so closely.

B.3.1 Node counting

One of the more wearying parts of the Rybka 1.0 Beta saga has been the “ob-
fuscation” of nodes and depth. This has developed into a long and convoluted
subject, and so I try to be brief here. In particular, while many were annoyed
to find out that Rybka was actually searching deeper and faster than other en-
gines (when the NPS/depth numbers told the opposite story), this has no direct
bearing on the Fruit issue.

For nodes, responding to Anthony Cozzie’s inquiry, Rajlich said (link):
“Actually, if you go in a debugger, you can trivially see that two quantities are
being combined. One I call “gulp”, this is for me the interesting figure (for my
private tests). The second is a simple ticker for the next I/O check.” [Feb 2006]

22This seems to be located from 0x4822a7-0x4826a0 in single-cpu 64-bit Rybka 3.
23One can note that both Fruit 2.1 and Rybka 1.0 Beta store both upper and lower score

bounds in hash entries. This is not overly common with PVS engines, but is more valuable
when using MTD(f), and it is plausible Rybka 1.0 Beta inherited this from earlier MTD(f) days.

22

http://www.stmintz.com/ccc/index.php?id=487297

However, previous statements of his seem to indicate that he was using
a more typical notion of a node in earlier Rybka versions. For instance,An analysis of the

pre-Beta Rybkas
confirms these used
a more standard
notion of node.

in post #356880 (March 27, 2004) he reports that “Rybka 1.3” gained about
20% from a 64-bit compile, from 1.2Mn/s to 1.5Mn/s. Four days previously, in a
thread musing about Shredder’s search, he agreed that depth could be tricky to
compute with reductions/pruning in the mix, but: “There aren’t too many ways
to calculate NPS, though, this is real info IMO.” Finally, later Rybkas determine
“nodes” by counting White make move() calls, and dividing by 7. [For depth
“obfuscation”, early Rybkas subtracted 2, and later versions subtract 3].

B.4 Statements of Rajlich

This is perhaps not the best place to dredge up more statements of Rajlich, but
I list here a few specific ones. Here “Rybka” would seem to refer to Rybka 1.0
Beta (having “Rybka” mean Rybka 1.5.32 would contextually be non sequitur).

First there are Rajlich’s well-known statements from an interview with
Alexander Schmidt and others (see #20-21, this is from Dec 2005):

[...] I went through the Fruit 2.1 source code forwards and backwards and
took many things. [...] Anyway, if I really had to give a number - my wild
guess is that Rybka would be 20 rating points weaker had Fruit not appeared.

The next (link) is in reply to Daniel Mehrmann, whose tests had suggested that
the mobility and PST in Rybka 1.0 Beta might derive from Fruit 2.1 (Mehrmann
later apologetically retracted this).

Subject: Rybka - How much Fruit is inside ? From: Vasik Rajlich
Message Number: 469187 Date: December 12, 2005 at 03:34:15
[...]
The Rybka source code is original and pre-dates all of the Fruit releases.
[...]

A few days later, in response (link) to Andrew Wagner asking him whether he
had done anything radically different, Rajlich uses the phrase “very original” to
describe the search and evaluation framework of Rybka.

Subject: Unmasking the Secrets of Rybka and Fruit From: Vasik Rajlich
Message Number: 470751 Date: December 16, 2005 at 03:42:44
> [...] If I were able to ask Vasik one question, which I doubt he would have
> time to answer at the moment, it would be whether he did anything radically
> different (different heuristic(s), algorithms, etc.), or if he just did what
> everyone else is doing, better than they did it.

Andy,

I will just end up teasing you by answering this. :)

As far as I know, Rybka has a very original search and evaluation framework.
A lot of things that have been dismissed by "computer chess practice" can
in fact work. [...]

23

http://www.stmintz.com/ccc/index.php?id=356880
http://www.stmintz.com/ccc/index.php?id=356230
http://www.superchessengine.com/vasik_rajlich.htm
http://www.stmintz.com/ccc/index.php?id=469187
http://www.stmintz.com/ccc/index.php?id=470751

C Addenda (March 7)

C.1 Linearity of mobility in evaluation

Referring to footnote 4 on page 2, both Rybka 1.0 Beta and Fruit 2.1 weight
mobility linearly in the number of squares attacked. This is not the case for
many other engines. For example, in Pepito 1.59 we find:

static const int MOV_ALFIL[14] = {-10, -5, 2, 3, 5, 6, 7, 8, 10, 10, 10, 10, 10, 10};
static const int MOV_TORRE[15] = {-5, - 3, 2, 3, 4, 5, 6, 7, 8, 8, 8, 8, 8, 8, 8};
//static const int MOV_CABALLO[9] = {-15, -4, 1, 2, 3, 4, 5, 7, 7};

and in Phalanx XXII we find:

int B_mobi[20] =
{ -36, -28, -20, -14, -6, -2, 1, 2, 3, 4, 5, 6, 7, 8, 8, 8, 8, 8, 8, 8 };
int R_mobi[16] =
{ -9, -5, -2, 0, 2, 4, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6 };

C.2 Constant bonuses for pawn defects

Referring to Section 3.3, another minor element is that both Rybka 1.0 Beta
and Fruit 2.1 give constant bonuses for pawn defects, while many other engines
vary these bonuses based upon rank/file considerations. For instance, here is
some code from Phalanx XXII (sic for the rank/file confusion):

/* isolated pawn penalty by rank */
static const int isofile[10] =
{ 0, -4, -6, -8, -10, -10, -8, -6, -4, 0 };
/*** A B C D E F G H ***/

C.3 More about hash structures

The phrasing in the main text may have obscured the fact that the latter 8
bytes of the hash structures in Fruit 2.1 and Rybka 1.0 Beta contain the same
information, but re-ordered. The Rybka 1.0 Beta structure has:

2 bytes for min value, 2 bytes for max value, a byte for move depth,
an unused byte, a byte for min depth, and a byte for max depth.

The Fruit 2.1 structure is:
a byte for move depth, an unused byte (called “flags”), a byte for min
depth, a byte for max depth, 2 bytes for min value, 2 bytes for max value.

As can be seen, Rybka 1.0 Beta switches24 bytes 8-11 with bytes 12-15. As
noted in footnote 23, the use of both min/max values and min/max depths in a
PVS engine does not seem to be that common. Finally, note that in addition to
“move depth” here, there is also a “depth” parameter in the first 8 bytes (byte 6
in both Rybka 1.0 Beta and Fruit 2.1); this overlapping usage of “depth” and
“move depth” again seems rather untypical.

24It would be against the C standard for the compiler to do this for alignment purposes,
though it must be admitted that this cannot be completely eliminated as a possibility.

24

C.4 On the 10-30-60-100/26-77-154-256 scaling

To give an example that this scaling is not universal, here is Pepito 1.59:

static const int PEON_PASADO[8] = {0, 5, 15, 30, 55, 75, 100, 0};
static const int PEON_PASADO_BLOQ[8] = {0, 5, 15, 20, 40, 60, 85, 0};
static const int REY_APOYA_PASADO[8] = {0, 0, 0, 0, 5, 20, 60, 100};

C.5 More about pre-Beta Rybkas

Since the first publication of this document, the Secretariat of the ICGA Clone
Investigations Panel obtained25 the pre-Beta Rybka version 1.6.1. There seemA particularly odd

fact is that Rybka
1.6.1 implemented
searchmoves.

to be few common elements between this pre-Beta version (dating from 2004)
and the Rybka 1.0 Beta released in December 2005.

However, there is ample evidence that Rybka 1.6.1 contains large amounts of
code taken from Crafty (the exact version is unclear, something in the early 19.x
series seems likely, given the start-date of Rybka development as early 2003).

The evidence is so voluminous that I can only briefly outline it here.As an aside here,
I can quote Rajlich
himself concerning
such copying, dur-
ing the analogous
2008 case of Strelka
copying Rybka:

These changes are
extensive and no
doubt lead to dif-
ferences in playing
style and perhaps
a useful engine for
users to have, but
they do not change
the illegality of the
code base.

� The re-use of code to ensure that tablebases lacking en passant information
will be ignored in relevant KP vs KP cases – this was for the Edwards
tablebases, which were obsolete many years prior to 2003. There is little
external explanation why this should appear in the Rybka 1.6.1 code.

� Crafty’s EvaluateWinner() (∼100 C lines) is verbatim in Rybka 1.6.1.
� The result of EvaluateMate() is checked (in both) to ensure it is not

equal to 99999 – this is a pointless check, firstly because the function
returns numbers of size at most a few hundred, and secondly because the
corresponding Rybka 1.6.1 version always returns even numbers.

� The first segments of the Evaluate() functions are the same, in particu-
lar the use of bitfields with the can win variable and the condition that
both sides must have less than 13 in material for EvaluateWinner() and
EvaluateStalemate() to be called.

� The code of NextEvasion(), including the phase-numbering, is exactly the
same (except a sanity check with ValidMove() is omitted in Rybka 1.6.1),
and the NextMove() routines have many atypical similarities (the complete
analysis here is currently in progress).

� A bug in twice zeroing the same field when clearing pawn hash appears in
both – the pawn hash structures themselves are not the same in Crafty and
Rybka 1.6.1, but this common error persists. Both Crafty and Rybka 1.6.1
have three places to clear pawn hash (init.c, option.c, and utility.c
in Crafty), and Rybka 1.6.1 has this bug in two of those functions.26

I do not claim that this even approaches the totality of evidence of Crafty
copying in Rybka 1.6.1, as a full investigation would be quite time-consuming.

25From Olivier Deville, who felt that he might have been “cheated” (his term), and provided
this so that a more complete history of Rybka development could be determined.

26The bug was in all three functions in Crafty until version 19.1 when init.c was fixed,
while option.c was fixed in 19.16 – so there were two sections of code with the bug from
versions 19.1 to 19.15, which if nothing else gives some bounds on what version was copied.

25

D More addenda (March 11)

D.1 The nature of evidence presented in various sections

In some sections, particularly Section 4 and also Section 3, I have only verified
and collated the work that others have done. Furthermore, both these sections
only deal with the standard of originality mentioned in the Introduction. It is
conceivable, for instance, that a further investigation (by myself or others) could
reveal additional evidence about the nature of any non-originality, with there
being specific interest in whether there was any “transliteration” in the sense of
copyright. Here I wish to stress that the above analysis does not address any
such more-specified questions, and so cannot answer them either way.

D.2 Examples of other evaluation features and functions

D.2.1 Crafty 19.0 eval
Here are some parts of the Evaluate() procedure in Crafty 19.0. All pieces
have a “tropism” based on their distance to the enemy king and a PST value.

Knight evaluation consists of outposts and whether the knight blocks a cen-
tral pawn on its home square.

Bishop evaluation starts with mobility (linear in the number of squares at-
tacked) and whether the bishop blocks a central pawn on its home square. There
is a bishop pair bonus, and when a side has exactly one bishop, a penalty is sub-
tracted for each pawn on its colour. In the endgame, a bonus for bishop against
knight is given if there are pawns on both sides of the board. A bonus for a
fianchettoed bishop in front of a castled king is also given in some game phases.

Rook evaluation starts with open files and half-open files. If a rook cannot
move horizontally, a penalty is applied. If the rook is behind a passed pawn, it
gets a bonus. A bonus for the rook on the 7th rank is applied if the opponent
has pawns on the 7th rank or a king on the back rank (as in Fruit/Rybka) –
this bonus is increased if there is an assisting major piece there.

Queen evaluation has a 7th rank bonus as above, with it necessary for the
queen to be supported by a rook on the 7th. If the opponent’s king safety is
sufficiently worse than our own, then a bonus for this is added. If there are
sufficiently many pawns left, a tropism penalty can be assessed when the queen
is on the “wrong” side of the board.

Crafty has trapped bishops, but only on a2/h2. It has blocked rooks, but the
squares on which the rook is considered “blocked” depend on the king location,
rather differently from Fruit 2.1 and Rybka 1.0 Beta. Endgames with bishops
of opposite colours can have their score reduced, with there being three cases: if
the material imbalance is no more than two pawns and there are only opposite-
coloured bishops left, the score is divided by 4; if the imbalance is at least 2
pawns, then the score is halved if only opposite-colour bishops are left, and else
halves the non-material part of the score.

Crafty has a number of “supporting” functions such as EvaluateWinner(),
EvaluateMate(), and EvaluateStalemate(). The most used of these might
be EvaluateDevelopment(), to try to ensure piece development in openings.

26

D.2.2 Phalanx XXII

It is perhaps easier for the reader to simply look at the source code, but I
briefly try to summarise. Phalanx computes middlegame and endgame scores,
and linearly interpolates these if the material situation on the board is within
certain ranges (otherwise simply the middle/endgame score is taken by itself).

First some special endgame knowledge is used (e.g., two knights can’t win) to
detect draws. Then the pieces are looped through, with mobility bonuses (non-
linear, see above) for bishops/rooks given, and pins being noted. These pins
are then used to start a “hung” piece list. A further scan increases knowledge
about hung pieces. King safety and safe checks are included, then a bishop pair
bonus, and then 7th rank bonuses for majors. For the latter, a weight of 2 for a
rook on the 7th and 1 for a queen on 6th-8th is given, and then these are folded
in, with a poor enemy king position giving an additional bonus.

A number of “anti-human” measures are then included, such as trying to get
Pc2-c4 played in closed games, and a function to try to predict likely “blun-
ders” (e.g., humans will often miss backward-diagonal moves). The effect of
knights/rooks is taken into account with isolated pawns. Bonuses are applied
to passed pawns: for a pawn on the 6th or 7th that is unblocked, SEE is used to
determine whether it can advance safely; if the pawn is blocked by a defender,
the bonus is halved or reduced by 25%; if the passed pawn is in a “phalanx”, a
bonus is given. Rooks (either friendly or opposing) behind a passed pawn are
rewarded. The distance to the enemy king is considered and rewarded accord-
ingly; if the friendly king supports the pawn (attacks the square in front of it),
a bonus is given.

Penalties for backwards pawns are given, and also for those that cannot move
(any friendly bishop on the color of such a pawn is additionally penalised); if an
isolated pawn has an enemy pawn blocking it, the isolation penalty is reduced.
Pawn chains/phalanxes are in general rewarded. An endgame “outpost” bonus
is given, and then a pawn storm bonus. There is an attempt to avoid pawn
pushes like a4/b4/g4/h4 (by White) in the opening.

A penalty for blocked rooks exists, and uses the same pattern as Fruit 2.1
and Rybka 1.0 Beta, though a pawn must be in front of the rook. Trapped
bishops must be on a7/h7 (for White), more bishop outpost bonuses are given,
and finally there is some bonus for a bishop involving pawn storm potential. The
same is then done with knights, first looking at outposts, then for a trapped
knight on a8/h8/a7/h7, and then an adjustment for storm potential. Queen
activity is penalised in the opening, and large distances to the enemy king are
penalised, especially in the endgame. Multiple hung pieces are penalised. An
outside passed pawn bonus is given. A trade down bonus is applied. And finally
an opposite-colour bishops adjustment is applied; first the score is halved, and
then an additional adjustment based upon pawn imbalance is made.

In short (pointing the reader to the Fruit/Phalanx source codes if necessary),
there is a handful of commonalities between Fruit 2.1 and Phalanx XXII, to
be compared to the more exacting overlap of evaluation features (both under
general headings and in specific conditions) between Fruit and Rybka 1.0 Beta.

27

D.2.3 An attempt to quantify evaluation feature commonalities
Finally, I try to quantify the overlaps of the evaluation features of various en-
gines, especially when compared to Fruit 2.1. This is necessarily unscientific to
some extent. I try to give 1 point for a match (to Fruit 2.1) if a feature is used
in the same manner, and 0.5 points (generally) if a feature is re-used but in
a different manner. Some programs have multiple phase-dependent eval func-
tions, which conflates the matter further. The version numbers for the engines
used here can be found elsewhere in this document.

Table 11: Evaluation features comparison between various engines
Feature Fruit Rybka Phalanx Pepito Crafty Faile
N mob 1.0 1.0 0.0 0.2 0.0 0.0
B mob 1.0 1.0 0.5 0.5 1.0 0.0
B trap 1.0 0.7 0.5 0.5 0.5 0.0
B block 1.0 1.0 0.5 0.0 0.5 0.5

opp B end 1.0 1.0 0.6 0.0 0.7 0.0
R mob 1.0 1.0 0.5 0.5 0.3 0.0
R open 1.0 0.8 0.0 0.8 1.0 1.0
R semi 1.0 0.8 0.3 0.8 0.5 1.0
R Katt 1.0 0.8 0.2 0.0 0.7 0.0
R 7th 1.0 1.0 0.5 0.5 0.8 0.5

R block 1.0 1.0 0.8 0.2 0.7 0.0
Q mob 1.0 1.0 0.0 0.0 0.0 0.0
Q 7th 1.0 1.0 0.0 0.5 0.7 0.0

P doub 1.0 1.0 1.0 1.0 0.7 0.7
P iso 1.0 1.0 0.5 0.5 0.8 0.6

P back 1.0 0.5 0.5 0.5 0.5 0.7
K danger 1.0 1.0 0.5 0.5 0.5 0.0

K shel/storm 1.0 0.5 0.4 0.5 0.5 0.5
cand P 1.0 0.5 0.0 0.2 0.6 0.0

PP block 1.0 0.5 0.5 0.5 0.7 0.0
PP free 1.0 0.5 0.7 0.0 0.0 0.0
PP dist 1.0 0.5 0.5 0.5 0.5 0.0

draw recog 1.0 0.2 0.7 0.6 0.7 0.0
interp 1.0 0.5 0.7 0.0 0.0 0.0

The overlap of Fruit 2.1 and Rybka 1.0 Beta is 18.8 of a possible 24 (the inverse
comparison is similar, except three more features for tempo, lazy eval, and
material imbalance would be added). While it is not easy to construe this result,
it does seem to be larger than could occur from chance alone. Furthermore, the
“second-place” engine, Crafty 19.0 with 12.9/24, has about 10-15 features not
seen in Fruit. Finally, there are a number of features for which Fruit 2.1 and
Rybka 1.0 Beta differ in implementation where perhaps the reason could solely
be due to the idioms of bitboards (open files and backward pawns for instance).

One can also list a variety of features (rooks behind passed pawns, special
code for BN mate, bad bishops, king tropisms, blind bishop, etc.) that are often
in other engines, but are missing in both Fruit 2.1 and Rybka 1.0 Beta.

28

D.3 Examples of PST not fitting Fruit structure

Here are two examples from Faile 1.4:
int bishop[144] = {
0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,
0,0,-5,-5,-5,-5,-5,-5,-5,-5,0,0,
0,0,-5,10,5,10,10,5,10,-5,0,0,
0,0,-5,5,3,12,12,3,5,-5,0,0,
0,0,-5,3,12,3,3,12,3,-5,0,0,
0,0,-5,3,12,3,3,12,3,-5,0,0,
0,0,-5,5,3,12,12,3,5,-5,0,0,
0,0,-5,10,5,10,10,5,10,-5,0,0,
0,0,-5,-5,-5,-5,-5,-5,-5,-5,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0};

int knight[144] = {
0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,
0,0,-10,-5,-5,-5,-5,-5,-5,-10,0,0,
0,0,-5,0,0,3,3,0,0,-5,0,0,
0,0,-5,0,5,5,5,5,0,-5,0,0,
0,0,-5,0,5,10,10,5,0,-5,0,0,
0,0,-5,0,5,10,10,5,0,-5,0,0,
0,0,-5,0,5,5,5,5,0,-5,0,0,
0,0,-5,0,0,3,3,0,0,-5,0,0,
0,0,-10,-5,-5,-5,-5,-5,-5,-10,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0};

Here are two examples from Pepito 1.59:
static const int TABLA_TORRE[]
= { -5, 0, 0, 0, 0, 0, 0, -5,

-5, 0, 0, 0, 0, 0, 0, -5,
-5, 0, 0, 0, 0, 0, 0, -5,
-5, 0, 0, 0, 0, 0, 0, -5,
-5, 0, 0, 0, 0, 0, 0, -5,
-5, 0, 0, 0, 0, 0, 0, -5,
-5, 0, 0, 0, 0, 0, 0, -5,
-2, 0, 3, 3, 3, 3, 0, -2};

static const int TABLA_DAMA[]
= { -10, -10, -10, -10, -10, -10, -10, -10,

-10, 0, 0, 0, 0, 0, 0, -10,
-5, 0, 4, 4, 4, 4, 0, -5,
-5, 0, 4, 8, 8, 4, 0, -5,
-5, 0, 4, 8, 8, 4, 0, -5,
-5, 0, 4, 4, 4, 4, 0, -5,
-5, 0, 4, 0, 0, 0, 0, -5,
-10, -10, -5, 0, -2, -5, -10, -10};

Here are two examples from Phalanx XXII:
/*** bishop in middlegame ***/
int bmpb_[80] =
{
0, 10, 8, 6, 4, 4, 6, 8,10, 0,
0, 8,12, 8, 9, 9, 8,12, 8, 0,
0, 10,10,11,11,11,11,10,10, 0,
0, 11,12,13,14,14,13,12,11, 0,
0, 12,13,15,17,17,15,14,12, 0,
0, 13,14,16,16,16,16,14,13, 0,
0, 11,14,12,12,12,12,14,11, 0,
0, 13,10,10,10,10,10,10,13, 0

}; const int * bmpb = bmpb_-20;

/*** rook in middlegame ***/
int rmpb_[80] =
{
0, 0, 1, 2, 3, 3, 2, 1, 0, 0,
0, 0, 1, 2, 3, 3, 2, 1, 0, 0,
0, 0, 1, 2, 3, 3, 2, 1, 0, 0,
0, 0, 1, 2, 3, 3, 2, 1, 0, 0,
0, 0, 1, 2, 3, 3, 2, 1, 0, 0,
0, 7, 8, 9,10,10, 9, 8, 7, 0,
0,10,11,12,13,13,12,11,10, 0,
0,10,11,12,13,13,12,11,10, 0

}; const int * rmpb = rmpb_-20;

29

	Evidence, and standards therein
	Outline of the evidence
	Commonality of evaluation features
	Piece evaluation (omitting king safety for now)
	Knights (see 0x4018d0 and 0x401eb0 in 64-bit Rybka 1.0 Beta)
	Bishops (0x401971-0401a3a and 0x401f60-0x40202a)
	Rooks (0x401a70-0x401bf8 and 0x402064-0x4021a7)
	Queens (0x401c30-0x401d96 and 0x4021e0-0x402336)

	King Safety (0x401db6-0x401e34 and 0x40233c-0x4023bd)
	King Shelter/Storm (0x408b97-0x408f85, 0x401e05, 0x402394)

	Pawn Evaluation (0x408870-0x4089da and 0x408a20-0x408b91)
	Passed Pawns (0x402410-0x40251f and 0x402570-0x402698)

	Interpolation (0x4028c1-0x4028dc) and sundry

	Identical ordering of root search procedures
	Common structure of PST computations
	The example of the knights
	Magnitude of this evidence

	Diagrams for other pieces
	Pawns PST
	Knights PST endgame
	Bishops PST
	Rooks PST
	Queens PST
	Kings PST

	Things of lesser importance
	Data structures with hashing
	Use of a quad()-like function for passed pawns
	The quad() function in Fruit 2.1
	Passed pawn numerology in Rybka 1.0 Beta
	Impact of this evidence

	UCI parsing
	Parsing the ``position'' string
	Time management

	Summary of evidence
	Root search analysis: iterative deepening
	Other comments
	Principal differences for Rybka 1.0 Beta and Fruit 2.1
	Later versions of Rybka
	The question of a re-write
	Node counting

	Statements of Rajlich

	Addenda (March 7)
	Linearity of mobility in evaluation
	Constant bonuses for pawn defects
	More about hash structures
	On the 10-30-60-100/26-77-154-256 scaling
	More about pre-Beta Rybkas

	More addenda (March 11)
	The nature of evidence presented in various sections
	Examples of other evaluation features and functions
	Crafty 19.0 eval
	Phalanx XXII
	An attempt to quantify evaluation feature commonalities

	Examples of PST not fitting Fruit structure

