On an empty Board
Home * Board Representation * Bitboards * Sliding Piece Attacks * On an empty Board
Single sliding piece attacks on the otherwise empty board or their disjoint subsets on lines or rays are that simple than none sliding pieces. We simply use pre-calculated tables for each piece-type, line or ray, indexed by square-index. To initialize those tables, one may use a fill approach with single populated from-sets, if availably anyway since used elsewhere. While the proposed line-routines here are quite small and cheap, incremental update during an initialization loop has some merits.
The various ray-,line- and piece sets are foundation of further attack calculation considering blocking pieces, for instance to mask the occupancy of relevant rays. Of course the piece attacks are union-sets of the disjoint line attacks, while the line attacks are unions of the disjoint ray attacks.
Ray Attacks
northwest north northeast noWe nort noEa +7 +8 +9 \ | / west -1 <- 0 -> +1 east / | \ -9 -8 -7 soWe sout soEa southwest south southeast
Rays by Line
Ray-Attacks may be conducted from Line-Attacks by intersection with "positive" and "negative" squares:
positiveRay[sq] = lineAttacks[sq] & (0 - 2*singleBit[sq]); negativeRay[sq] = lineAttacks[sq] & (singleBit[sq] - 1);
or with shifts instead of lookups
positiveRay[sq] = lineAttacks[sq] & (C64(-2) << sq); negativeRay[sq] = lineAttacks[sq] & ((C64(1) << sq) - 1);
Positive Rays
Remember Square Mapping Considerations.
By Lookup
East (+1) Nort (+8) NoEa (+9) NoWe (+7) . . . . . . . . . . . 1 . . . . . . . . . . . 1 . . . . . . . . . . . . . . . . . . . 1 . . . . . . . . . . 1 . 1 . . . . . . . . . . . . . . . . . . 1 . . . . . . . . . 1 . . . 1 . . . . . . . . . . . . . . . . . 1 . . . . . . . . 1 . . . . . 1 . . . . . . . . R 1 1 1 1 . . . R . . . . . . . B . . . . . . . B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Initialization
North attacks are simple to initialize inside a loop, starting from a1, shifting left:
U64 nort = C64(0x0101010101010100); for (int sq=0; sq < 64; sq++, nort <<= 1) rayAttacks[sq][Nort] = nort;
Similar, but tad trickier for ranks and diagonals, due to the wraps. For instance the north-east direction:
U64 noea = C64(0x8040201008040200); for (int f=0; f < 8; f++, noea = eastOne(noea) { U64 ne = noea; for (int r8 = 0; r8 < 8*8; r8 += 8, ne <<= 8) rayAttacks[r8+f][NoEa] = ne; }
By Calculation
Orthogonal positive rays are quite cheap to calculate on the fly. For diagonal rays split the lines as mentioned.
U64 eastMaskEx(int sq) { const U64 one = 1; return 2*( (one << (sq|7)) - (one << sq) ); } U64 nortMaskEx(int sq) { return C64(0x0101010101010100) << sq; }
Negative Rays
Remember Square Mapping Considerations.
By Lookup
West (-1) Sout (-8) SoWe (-9) SoEa (-7) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1 1 R . . . . . . . R . . . . . . . B . . . . . . . B . . . . . . . . . . . . . . . 1 . . . . . . 1 . . . . . . . . . 1 . . . . . . . . . . . . . . 1 . . . . . 1 . . . . . . . . . . . 1 . . . . . . . . . . . . . 1 . . . . 1 . . . . . . . . . . . . . 1 .
Initialization
South attacks are simple to initialize inside a loop, starting from h8, shifting right:
U64 sout = C64(0x0080808080808080); for (int sq=63; sq >= 0; sq--, sout >>= 1) rayAttacks[sq][Sout] = sout;
Similar, but tad trickier for ranks and diagonals, due to the wraps.
By Calculation
Orthogonal negative rays are quite cheap to calculate on the fly. For diagonal rays split the lines as mentioned.
U64 westMaskEx(int sq) { const U64 one = 1; return (one << sq) - (one << (sq&56)); } U64 soutMaskEx(int sq) { return C64(0x0080808080808080) >> (sq ^ 63); }
Line Attacks
RankAttacks[sq] = EastAttacks[sq] | WestAttacks[sq]; FileAttacks[sq] = NortAttacks[sq] | SoutAttacks[sq]; DiagonalAttacks[sq] = NoEaAttacks[sq] | SoWeAttacks[sq]; AntiDiagonalAttacks[sq] = NoWeAttacks[sq] | SoEaAttacks[sq];
By Lookup
Rank File Diagonal Anti-Diagonal . . . . . . . . . . . 1 . . . . . . . . . . . 1 . . . . . . . . . . . . . . . . . . . 1 . . . . . . . . . . 1 . 1 . . . . . . . . . . . . . . . . . . 1 . . . . . . . . . 1 . . . 1 . . . . . . . . . . . . . . . . . 1 . . . . . . . . 1 . . . . . 1 . . . . . 1 1 1 R 1 1 1 1 . . . R . . . . . . . B . . . . . . . B . . . . . . . . . . . . . . . 1 . . . . . . 1 . . . . . . . . . 1 . . . . . . . . . . . . . . 1 . . . . . 1 . . . . . . . . . . . 1 . . . . . . . . . . . . . 1 . . . . 1 . . . . . . . . . . . . . 1 .
By Calculation
To calculate line masks for ranks, files, diagonals and antidiagonals on the fly:
U64 rankMask(int sq) {return C64(0xff) << (sq & 56);} U64 fileMask(int sq) {return C64(0x0101010101010101) << (sq & 7);} U64 diagonalMask(int sq) { const U64 maindia = C64(0x8040201008040201); int diag =8*(sq & 7) - (sq & 56); int nort = -diag & ( diag >> 31); int sout = diag & (-diag >> 31); return (maindia >> sout) << nort; } U64 antiDiagMask(int sq) { const U64 maindia = C64(0x0102040810204080); int diag =56- 8*(sq&7) - (sq&56); int nort = -diag & ( diag >> 31); int sout = diag & (-diag >> 31); return (maindia >> sout) << nort; }
The generalized shift version for diagonals and antidiagonals as introduced by Thomas Jahn [1] produces shorter and faster code on modern x86-64 processors due to BMI2 shift instructions not affecting the flags [2]:
U64 diagonalMask(int sq) { const U64( maindia = C64(0x8040201008040201); int diag = (sq&7) - (sq>>3); return diag >= 0 ? maindia >> diag*8 : maindia << -diag*8; } U64 antiDiagMask(int sq) { const U64( maindia = C64(0x0102040810204080); int diag = 7 - (sq&7) - (sq>>3); return diag >= 0 ? maindia >> diag*8 : maindia << -diag*8; }
Excluding the square bit:
U64 rankMaskEx (int sq) {return (C64(1) << sq) ^ rankMask(sq);} U64 fileMaskEx (int sq) {return (C64(1) << sq) ^ fileMask(sq);} U64 diagonalMaskEx(int sq) {return (C64(1) << sq) ^ diagonalMask(sq);} U64 antiDiagMaskEx(int sq) {return (C64(1) << sq) ^ antiDiagMask(sq);}
Piece Attacks
RookAttacks[sq] = RankAttacks[sq] | FileAttacks[sq]; BishopAttacks[sq] = DiagonalAttacks[sq] | AntiDiagonalAttacks[sq]; QueenAttacks[sq] = RookAttacks[sq] | BishopAttacks[sq];
By Lookup
Queen . . . 1 . . . 1 1 . . 1 . . 1 . . 1 . 1 . 1 . . Rook . . 1 1 1 . . . Bishop . . . 1 . . . . 1 1 1 Q 1 1 1 1 . . . . . . . 1 . . . 1 . . . . . . 1 1 1 . . . 1 . . . . . 1 . . . . 1 . . . . . 1 . 1 . 1 . . . 1 . . . 1 . . . . . 1 . . . . 1 . . 1 . . 1 . . . 1 . 1 . . . 1 1 1 R 1 1 1 1 . . . B . . . . . . . 1 . . . . . . 1 . 1 . . . . . . 1 . . . . . 1 . . . 1 . . . . . 1 . . . . 1 . . . . . 1 .
By Calculation
U64 rookMask (int sq) {return rankMask(sq) | fileMask(sq);} U64 bishopMask (int sq) {return diagonalMask(sq) | antiDiagMask(sq);} U64 rookMaskEx (int sq) {return rankMask(sq) ^ fileMask(sq);} U64 bishopMaskEx(int sq) {return diagonalMask(sq) ^ antiDiagMask(sq);} U64 queenMask (int sq) {return rookMask(sq) | bishopMask(sq);} U64 queenMaskEx (int sq) {return rookMask(sq) ^ bishopMask(sq);}
See also
Forum Posts
- [Question] Efficiently generate ray masks? by Daniel Infuehr, CCC, January 16, 2022
- Re: [Question] Efficiently generate ray masks? by Thomas Jahn, CCC, January 17, 2022
References
- ↑ Re: [Question] Efficiently generate ray masks? by Thomas Jahn, CCC, January 17, 2022
- ↑ SARX/SHLX/SHRX — Shift Without Affecting Flags