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Product Propagation:
A Backup Rule Better Than Minimaxing?

Hermann Kaindl, Senior Member, IEEE, Helmut Horacek, and Anton Scheucher

Abstract—There is a gap between theory and practice regarding
the assessment of minimaxing versus product propagation . The
use of minimaxing in real programs for certain two-player games
like chess is more or less ubiquitous, due to the substantial search
space reductions enabled by several pruning algorithms. In stark
contrast, some theoretical work supported the view that product
propagation could be a viable alternative, or even superior on
theoretical grounds. In fact, these rules have different conceptual
problems. While minimaxing treats heuristic values as true values,
product propagation interprets them as independent probabili-
ties. So, which is the better rule for backing up heuristic values in
game trees, and under which circumstances? We present a system-
atic analysis and results of simulation studies that compare these
backup rules in synthetic trees with properties found in certain
real game trees, for a variety of situations with characteristic prop-
erties. Our results show yet unobserved complementary strengths
in their respective capabilities, depending on the size of node
score changes (“quiet” versus “nonquiet” positions), and on the
degree of advantage of any player over the opponent. In particular,
exhaustive analyses for shallow depths show that product propaga-
tion can indeed be better than minimaxing when both approaches
search to the same depth, especially for making decisions from a
huge amount of alternatives, where deep searches are still pro-
hibitive. However, our results also provide some justification for
the more or less ubiquitous use of minimaxing in chess programs,
where deep searches prevail and the pruning algorithms available
for minimaxing make the difference.

Index Terms—Game trees, minimaxing, multivalued evaluation
functions, product propagation, simulation studies.

I. BACKGROUND AND INTRODUCTION

W HILE the game of checkers has been solved [1], there
are many other interesting games that are not, and some

will never be. That is, except for rare positions of such a game,
there is no practical way of determining the exact status (the
true value) of non-goal nodes that represent most of the posi-
tions. Therefore, it is usually necessary to resort to heuristic
estimates of their “goodness” or “strength” for one side. Such
values are assigned by a so-called static evaluation function f
which incorporates heuristic knowledge about the domain in
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question. In this paper it is sufficient to consider f(n) as some
function that evaluates each node n (that represents a position)
with some error.

Given such an evaluator, the question remains how its values
can be used for making reasonable decisions. Since the imme-
diate application of f to the children of the given node usually
does not lead to good decisions in practice, it seems “natural”
to look ahead by searching deeper and evaluating the resulting
nodes. For such a procedure, it remains to be specified how deep
the various branches should be searched (to uniform or variable
depth [2], [3]) and how the heuristic values should be backed
up (i.e., propagated) from the given node’s children.

While the backup quality through two different rules is the
focus of this paper, we decided to stick with searches to uniform
depth, since this allows a fair comparison through exactly the
same number of backups for both rules throughout. Although
in practice searches are to variable depth, we can compare the
two backup rules using strictly uniform depths without losing
generality. In fact, a heuristic evaluation at some depth can, in
principle come from a deeper search below, but it is sufficient
for the purposes of our study that it evaluates with a certain
quality. The latter is characterized here with an error probabil-
ity, and it is, of course, the same for both backup rules. So, any
possible effect of variable depth of search trees related to the
compared backup rules is outside the scope of this paper.

A. Minimaxing

In two-person games with perfect information, the most suc-
cessful approach for backing up values in practice has been
minimaxing (for a description see, e.g., [4]). In the following,
we assume that f(n) assigns a value to a node n from the view-
point of the moving side at n. Since the depth of such searches
is important for the purpose of this paper, we also define here a
special case where all branches are searched to the same depth.

Definition 1: A minimax value MMf (n) of a node n can be
computed recursively as follows (in the negamax formulation
complementing the successor values, in order to avoid handling
the two cases of maximizing and minimizing separately).

1) If n is considered terminal: MMf (n)← f(n).
2) else: MMf (n)← max

i
(−MMf (ni)) for all child nodes

ni of n.
While this formulation would also cover variable-depth

search, MMd
f (n) is the minimax value of node n resulting from

exactly d applications of the recursion (2) in every branch of the
search tree. That is, MMd

f (n) defines the minimax value from a
full-width search of the subtree rooted at n to a uniform depth d.

1943-068X © 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



110 IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES, VOL. 9, NO. 2, JUNE 2017

The use of minimaxing in computer chess practice is more or
less ubiquitous. For instance, the special chess machine Deep
Blue, which defeated the highest-rated human chess player for
the first time in a match consisting of several games under tour-
nament conditions, used minimaxing. Current chess programs
still use minimaxing, but with much more variable search based
on so-called null moves, see, e.g., [3]. As explained above,
variable search depth is outside the scope of our paper.

Yet there has been some theoretical doubt on the usefulness
of minimaxing as pointed out by Pearl [5]. In fact, minimax-
ing treats heuristic estimates as if they were true values. Pearl
compared this to committing one of the deadly sins of statistics,
computing a function of the estimates instead of an estimate of
the function. So, there is some lack of theoretical foundation
and explanation for the (very successful) use of minimaxing in
game-playing practice.

Even to the contrary, Nau [6] and Beal [7] showed indepen-
dently that for certain classes of game trees the decision quality
is degraded by searching deeper and backing up heuristic values
using the minimax propagation rule. Nau called such behavior
pathological (see also [5], [8] for successor work).

More realistic results about the effects of deeper and deeper
searches using minimaxing were achieved through an investi-
gation under more realistic game tree conditions when using
multivalued evaluation functions [9]. Such functions have many
distinct values as their result and can discriminate between
positions according to the heuristic knowledge represented in
these values. Simulation studies of this multivalued model have
exhibited sharp error reductions for deeper searches using min-
imaxing, as observed in practice. The error reductions are
primarily due to the improved evaluation quality as search depth
increases, although the same evaluation function is used at all
levels of the tree, and although its general error probability is
independent of the depth. Essentially, with increasing search
depth, the evaluation function is more frequently used on such
positions that can be more reliably evaluated by a multivalued
function with the assumed properties, which are also found in
practice. This effect together with the ability to discriminate
between positions of different “goodness” leads to the bene-
fits of using multivalued evaluation functions (of appropriate
granularity) for minimaxing. While these results are more gen-
eral than those from experiments using concrete game-playing
programs, they have a close relation to, e.g., computer chess
and checkers practice. A more general investigation of deeper
look-ahead using minimaxing appeared more recently in [10].

B. Product Propagation

Since the benefits of using minimaxing in practice had not
been explained theoretically for a long time, different backup
rules have been proposed, such as product propagation [5]
(in fact, this rule was already used much earlier by Slagle
and Bursky [11]). It requires that an evaluation function f ′(n)
returns values between 0 and 1 that are estimates of the prob-
ability that the position represented by node n is a forced win.
f ′(n) assigns a value to a node n from the viewpoint of the
moving side at n.

Fig. 1. Move decision error by Minimax.

Definition 2: A probability estimate PPf ′(n) of a node
n can be computed recursively as follows (in the negamax
formulation).

1) If n is considered terminal: PPf ′(n)← f ′(n).
2) else: PPf ′(n)← 1−∏

i(PPf ′(ni)) for all child nodes
ni of n.

PP d
f ′(n) is the depth d estimate of node n resulting from

exactly d applications of the recursion (2) in every branch of
the search tree, in analogy to MMd

f (n) as defined above.
Product propagation is theoretically sound for indepen-

dent probabilities. However, as noted already by Slagle and
Bursky such probabilities are generally not independent in
practice.

C. Two Representative Examples of Errors Made

In order to get a better understanding of the relative quali-
ties of these backup rules, let us have a look at representative
examples of move-decision errors. For ease of presentation, we
select examples with the shallowest search depth of 2 that make
a difference to the move decision of Minimax and Product,
respectively. “Minimax” and “Product” are players that use
minimaxing (see Definition 1) and product propagation (see
Definition 2), respectively.

Each node (A to G in Figs. 1 and 2) is associated with its
true value (WIN or LOSS), a Minimax score MM accord-
ing to the function f(n), and a Product score PP according to
function f ′(n), where both f(n) and f ′(n) provide heuristic
estimates of the true value of node n. For a fair compari-
son, f(n) and f ′(n) have to correspond, of course. Below we
define exactly how f ′(n) is derived from f(n). The value of
the evaluation function f(n) (and its derived f ′(n)) is consid-
ered erroneous for position n if its preference is inconsistent
with the true value, that is, f(n) < 0 and f ′(n) < 0.5 for a
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Fig. 2. Move decision error by Product.

won position, as well as f(n) > 0 and f ′(n) > 0.5 for a lost
position, respectively.

In the example of Fig. 1,1 Minimax takes the wrong move
to a losing position E because of the gross evaluation error of
position D in the other subtree. The wrong heuristic estimate
is treated by Minimax as if it were a true value. Product com-
pensates for this evaluation error in this example through taking
into account the evaluation of position C as well.

In the example of Fig. 2, Product takes the wrong move to a
losing position E. In essence, the high probability to win esti-
mated for position G more than outweighs the much smaller
probability to win estimated for position F (which amounts
even to a small estimated probability to lose of 0.50757), com-
pared to small probabilities to win estimated for both positions
C and D in the other subtree. In contrast, Minimax makes the
correct decision in this example by avoiding the position F
due to its negative evaluation. These examples are consistent
with the major result of [12], [13], which relates the respec-
tive advantages of minimaxing and product propagation to the
strength of the evaluation function. While larger errors of this
function favor product propagation, smaller ones favor mini-
maxing. The example of Fig. 1 contains a gross evaluation error
of a terminal node, while there is even no such error in Fig. 2.

D. Different Views on These Propagation Rules

However, these examples suggest a different view of these
backup rules than the one expressed by Pearl in [4], [5]. Pearl
states that minimaxing may be useful for beating a fallible
opponent, since this backup rule contains a realistic model of
a fallible opponent who shares the assessment of the terminal

1In the presentation of such an example, it is better to use the minimax
instead of the negamax formulation for pedagogical reasons. Therefore, we
show all values from the viewpoint of the moving side at A.

values by the player Minimax—such an opponent can be pre-
dicted to choose the moves evaluated best in the search tree of
Minimax.

Actually, it depends on the errors made by the evaluation
function. Under the conditions in our model2 (and presumably
in real computer chess programs), it is Product who would play
for the option of taking advantage of an error by a fallible oppo-
nent as illustrated in the example of Fig. 2. As explained above,
Product decides for the wrong move to the lost position E,
where a strong opponent can be expected to move to position F
for exploiting this error made by Product. A fallible opponent,
however, may commit a blunder by moving to position G,
which is better for the player Product than any of the two posi-
tions C or D, which can result after the correct move to position
B (instead of E) before. As shown with this example, Product
can be viewed to ‘hope’ for a blunder by a fallible opponent.
So, this is in contrast to the view expressed by Pearl [4], [5].

Some authors (such as [5], [12], [14], [15]) conjecture that
product propagation could be a viable alternative to minimax-
ing. So, this theory and, e.g., computer chess practice seem
to be in conflict. Therefore, we compared the performance of
product propagation to that of minimaxing in several ways.
For depth 2, we carried out a systematic analysis of the differ-
ences between the backup rules according to combinations of
evaluation errors. In effect, this is a complete analysis of their
respective decision quality and, therefore, its associated results
are without uncertainty (it was published under this heading in
our related conference paper [16]). For depth 3, we made com-
prehensive and systematic tree searches in the game tree model
introduced in [9], since it appears to capture most closely the
essential conditions encountered in game-playing practice. For
less shallow search depths, we made simulation studies in this
game tree model with statistically significant results.

E. Paper Overview

The remainder of this paper is organized in the following
manner. First, we summarize previous work on comparing min-
imaxing with product propagation. In order to make this paper
self-contained, we also explain the tree model introduced in
[9]. Then we present a qualitative analysis of the backup differ-
ences between minimaxing and product propagation (based on
the study of their respective decision quality in [16]). Since this
exhaustive analysis is practically restricted to depth 2 search,
we subsequently present a quantitative analysis of systematic
tree searches to depths 2 and 3. For an investigation of less
shallow search depths, we present a simulation study, which
includes game contests in simulated trees.

II. PREVIOUS WORK

While there has been a fair bit of attention on the theoreti-
cal problem of minimaxing pathology, some of which we have
mentioned in the introduction, we focus here on the work that
directly compares minimaxing with product propagation under
various conditions.

Nau [14] investigated product propagation as an alternative
to minimaxing in games where the values of the real leaf nodes

2For details about the underlying game tree model, see Section III.
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directly correspond to the values of the squares in the ini-
tial board configuration, which are randomly assigned one of
two values independently of the values of the other squares.
Under these conditions, Nau’s experiments resulted in a higher
probability of correct move decision using product propagation
compared to minimaxing. In a game contest, a program based
on product propagation scored marginally better than an other-
wise identical program based on minimaxing. In similar games,
but with incremental dependencies of true game-theoretic val-
ues, the results showed about the same probability of correct
move decision for both backup rules.

In later work, Nau et al. [15] reported that product propaga-
tion scored better than minimaxing (at most search depths) in
a game contest with independent probabilities, when counting
the critical games only.3 Further experiments showed, how-
ever, that minimaxing was better than product propagation (for
search depths 3 and 4) in a game contest with incremental
dependencies.

Nau [13] defined games with dependencies of true game-
theoretic values in graphs where sibling nodes have many
children in common. A comparison of minimaxing and prod-
uct propagation on these games indicated some influence of the
evaluation function used. Game contests revealed that product
propagation performed better than minimaxing if some evalu-
ation function was used and worse than minimaxing if another
function was used that is more accurate for these games. Results
by Chi and Nau [12] confirmed this relationship of the respec-
tive advantages of these rules to the strength of an evaluation
function used: the stronger the evaluation function the better
for minimaxing.

Additionally, Chi and Nau compared these backup rules on
several games, including a small variant of kalah. Most interest-
ingly, in this real game a program based on product propagation
performed better than its opponent based on minimaxing.

Since both programs searched to the same depth, however,
these comparisons were unfair for minimaxing, which could
have utilized well-known pruning procedures for searching
much deeper with the same number of nodes generated. (For
a comparison of pruning procedures see [17].) Still, there was
some indication that product propagation may be the better rule
for backing up heuristic values.

Nau et al. [15] as well as Baum [18] investigated combi-
nations of minimaxing and product propagation. Their results
suggested that the respective advantages could be combined by
some combination of these backup rules.

In summary, the previous theoretical work on comparing
minimaxing with product propagation was not conclusively in
favor of either backup rule. In particular, it neither provided
an explanation why product propagation is neglected, e.g., in
computer chess practice, nor whether this would be justified.

Note that all this related work above appeared a long time
ago, so it seems as though this topic has been laid to rest. Even
the more recent investigation of the effects of deeper look-ahead
mentioned above focuses on minimaxing only and does not

3For each initial game board, one game was played with one player moving
first and another was played with his opponent moving first. For some game
boards, one player was able to win both games of the pair. These are called
critical games.

include product propagation [10]. Interestingly, another recent
study proposed a new propagation rule named “error mini-
mizing minimax” bearing some resemblance to the product
propagation rule [8]. However, it requires both heuristic val-
ues and error estimates on those values, where the latter are
rarely available for, e.g., chess programs. Therefore, we con-
sider this approach outside the scope of our paper and rather
provide new results for the comparison of minimaxing and
product propagation per se.

Other, more recent research employs a distribution calculated
through probability propagation for guiding best-first search in
the context of proving the outcome of an adversarial game (in
the sense of its true value such as WIN or LOSS) [19], [20].
Like Proof Number search [21], a best-first search algorithm for
finding solutions to problems represented in AND/OR trees,
this addresses efficiency of search rather than quality of backup
values in bounded search.

Yet other recent research on very selective search in com-
puter Go employs Monte Carlo Tree Search (see, e.g., [22]),
a best-first tree search algorithm that evaluates each state by
the average result of simulations from that state. It has recently
been combined with minimaxing [23].

All this more recent work does not, however, address or
answer the question that we take up again in this paper, whether
product propagation is a better backup rule than minimaxing.

III. THE UNDERLYING GAME-TREE MODEL

AND TREE GENERATION

The underlying game-tree model is the same as the one intro-
duced in [9]. In order to make our presentation self-contained,
we briefly sketch it here.

The following assumptions of the underlying game-tree
model are derived from Pearl’s [5] basic model (as given in [9]):

1) the tree structure has a uniform branching degree b;
2) true values of nodes (TV ) are either WIN or LOSS;
3) true values have the game-theoretic relationship of two-

person zero-sum games with perfect information4;
4) heuristic values h [assigned to a node n by a static

evaluation function f(n)] are elements of the set
{−hmax, . . . ,−1,+1, . . . ,+hmax}.5

For product propagation, a function f ′ is needed, which esti-
mates probabilities to win. f ′ is functionally dependent on
f as given in Section III-A, where the following monotony
conditions are required:

1) f(n) = 0 implies f ′(n) = 0.56;
2) f(n1) > f(n2) implies f ′(n1) > f ′(n2).

4A nonterminal node is won for the side to move if at least one of its child
nodes is won, and it is lost otherwise.

5In chess, a simple evaluation function which is based on the sum of the chess
pieces’ material values gives rise to a value of 42 for hmax. Discussions about
finer-grained evaluation functions can be found in [9]. However, the qualitative
effects are the same, and restricting to the material balance avoids that the reader
must be very familiar with specifics of chess. So, for showing the major effects
in this paper we use hmax = 42.

6f(n) = 0 actually cannot occur for the given definition above taken from
[9], which avoids intricacies with error definitions because the game model does
not contain a draw. For expressing monotony constraints, the concern about
complication in error analysis is irrelevant.
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Two additional conditions are taken from [9], where they are
derived and their rationale is given.

A. Non-uniformity of Error Distribution

Whenever a heuristic value incorrectly estimates the true
value, an error occurs. We characterize the error made by an
evaluation function f as a probability of error. The nonuniform
error distribution in this model

ec(h) =

{
wc(h) h < 0

1− wc(h) h > 0
(1)

is based on the following distribution of the probability to win
(for some constant c):

wc(h) =

⎧⎪⎪⎨
⎪⎪⎩

1

2
+

1

2 arctan(c)
arctan(c

h

hmax
) if h = f(n) ∈

[−hmax, hmax]

0 otherwise

(2)

This function was developed from a simpler one proposed by
Pearl [4, p. 360] (also based on the arc tangent function).
Horacek [24] informally used a function with similar shape in
order to handle reasoning with uncertainty in a computer chess
program. Chess and checkers programs, for instance, assign
large heuristic values to positions evaluated as clearly favor-
able. In practice, they win games more often when they achieve
such positions on the board. The higher these values, the more
likely the program is winning. Therefore, it is clearly reason-
able to assume that small heuristic values have a low probability
to win, which increases monotonically with increasing heuris-
tic values. Furthermore, for positive heuristic values it is more
likely to win than to lose.

Since Pearl’s function based on the arc tangent cannot be
parameterized, (2) generalizes it to a set of “probability to win”
distributions wc(h) through its parameter c.7 It allows spec-
ifying the slope of the curve. (For simplicity, we assume a
continuous range of heuristic values at this point.)

The actual mapping from f to f ′ makes use of this function
as follows: f ′(n) = wc(f(n)). So, the monotony conditions
required are fulfilled.

B. Dependency of Heuristic Values

The heuristic values of child nodes depend on the heuristic
value of the parent node due to the incremental dependency
defined as follows. If 0 is the minimum change and a denotes
the maximum change in the evaluation between node n and its
child nodes ni (for all i from 1..s, with s being the number of
child nodes), the following constraint holds:

MAX : f(n) ≤ f(ni) ≤ f(n) + a

MIN : f(n)− a ≤ f(ni) ≤ f(n)
(3)

7
∫∞
−∞ wc(h)dh = 1

C. Tree Generation in General

The basic scheme in this model is that the side to move can
improve or at least maintain its score by making a move in a
few distinct ways, each of which is associated with some (posi-
tive or zero) score increment.8 According to this scheme, binary
game trees (with exactly two child nodes for each non-leaf
node) of uniform depth dg are generated top-down, beginning at
the root node by a recursive procedure. Starting with a heuristic
value assigned to the root node, heuristic values are assigned
to the child nodes ni of a node n such that the heuristic values
are established.9 Once given the heuristic values, the true values
can be assigned to the nodes ni with the probability of error ec
under the constraint of the game-theoretic relationship.10

Based on this general approach to tree generation, our differ-
ent studies require specific enhancements. For the exhaustive
analyses, complete enumeration is required, of course. For the
simulation studies, in contrast, stochastic events are simulated.
More details are given in the respective sections below.

IV. QUALITATIVE ANALYSIS OF BACKUP DIFFERENCES

First, we analyze differences between the competing backup
rules in purely qualitative terms, that is, independently of
assumptions about the concrete value distribution in the game
tree. In this setting, we clearly cannot expect a general finding
that one of the backup rules is outperforming the other. We do,
however, intend to identify influence factors which contribute
to superior performance of Minimax or Product, respectively.
We have to restrict this exhaustive analysis to the case of depth
2 searches for reasons of complexity explained below in more
detail. In effect, this is a comparative analysis of the decision
quality of Minimax vs. Product.

A. The Basic Situation for a Comparison

We carried out a systematic analysis of the differences
between the backup rules according to combinations of eval-
uation errors. The basic situation in which differences between
minimaxing and product propagation manifest themselves is
illustrated in Fig. 3, for depth 2 and branching degree 2, with
node labels as indicated. In order for this diagram to represent
a critical case, two conditions concerning the values associated
with the nodes must hold:

1) the backup rules must select different moves;
2) one move leads to a won position, while the other leads to

a lost position.
Whether the first condition holds can be derived from the

definitions of the competing backup rules. Without loss of gen-
erality (due to symmetries), we assume that Max is on move
in the root position R, M the node preferred by Minimax, P
the one preferred by Product, and that f ′(M1) ≥ f ′(M2) and

8This does obviously not include Zugzwang cases as in chess, but they occur
very rarely, so that we exclude them from our modeling approach.

9According to the tree model, uniformly distributed integer increments
ranging from 0 to 8 are assumed, using a = 8 in Eq. (3).

10Due to the shape of the function ec (see (1)), heuristic values must be
assigned to nodes ni before the true values, because it is impossible to achieve
such an error distribution starting with the true values WIN and LOSS.
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Fig. 3. Basic situation with differences between Minimax and Product.

Fig. 4. Intervals of the draw value.

f ′(P1) ≥ f ′(P2) hold.11 Under these conditions, f ′(M1) and
f ′(M2) must both be greater than the value of the smaller of
the successor nodes of P , f ′(P2), according to minimaxing.
Conversely, product propagation demands that the product of
the successors of P is greater than the product of the successors
of M . Therefore, the value of the larger of the successor nodes
of P , f ′(P1), must be greater than both f ′(M1) and f ′(M2).
Consequently, there exists a partial ordering between the values
of these four nodes

f ′(P2) ≤ f ′(M2) ≤ f ′(M1) ≤ f ′(P1). (4)

The second property of a critical case depends on the true values
associated with the competing nodes, M and P , which in turn
depend on the true values of their successor positions. Hence,
we have to distinguish which of the positions M1, M2, P1, and
P2 are evaluated correctly and which ones are not. This yields
16 cases to be considered.

In our analysis, we also distinguish how the transition point
between loss and win (the draw value, 0 in terms of f , and 0.5 in
terms of f ′) relates to these four values. This yields five cases,
leading to a total of 80 cases. Among these cases, those are rel-
evant where the move decision matters, that is, where M is won
and P lost for the side to move, or vice versa. Together with the
partial ordering on the evaluations of the positions under discus-
sion, the draw value can be in one of the intervals as labeled in
Fig. 4. This information helps us to distinguish the various cases
of value assignments of the leaf nodes. For example, if the draw
value is in the interval I2, then the true value of P2 = WIN ,
while all the other three nodes have the value LOSS.

11Because of the monotony condition, it does not matter that Minimax actu-
ally works with f rather than f ′, where the former can be mapped to the latter.
We cannot do this ordering with f , however, since a product of probabilities is
involved, as given below.

B. Properties of the Basic Situation

For illustrative purposes, let us discuss a representative case
of the basic situation. If there is no evaluation error, then only
the case where the draw value falls in interval I4 makes a differ-
ence between the competing backup rules, since M is won and
P lost in I4 (compare with the example in Fig. 2). If the draw
value falls in interval I5, then all values are ‘positive’ (that is,
f > 0, i.e., f ′ > 0.5) and both M and P are won. If the draw
value falls in one of the intervals I3, I2, or I1, then both M and
P are lost.

The analysis of all 80 cases along similar lines yields the
differences between minimaxing and product propagation sum-
marized in Table I, where only the critical cases have to be
dealt with. The left part contains the constellations where mini-
maxing makes the right decision and product propagation does
not, and the right one those where only product propagation
succeeds. The lines are ordered according to the number of
evaluation errors associated with the four positions, and in each
cell, the erroneous positions are indicated, together with the
interval in which the draw value falls in each case.

Despite the high degree of abstraction of the information
contained in the table entries, it shows that advantages and
disadvantages of minimaxing and product propagation are bal-
anced in terms of the number of cases. However, this does not
necessarily imply that both propagation rules are equally good
in general. Their relative move decision quality depends on fur-
ther conditions as analyzed in detail in [16] and summarized
below.

C. Analysis with a Simplifying Assumption

The comparison leads to an interesting result for the special
case that the heuristic values have a uniform error distribution.
Based on this simplifying assumption, only the two extreme
cases favoring minimaxing and the two average cases favor-
ing product propagation, as well as the difference between the
number of cases falling in either of the intervals I2 and I4
remain as decisive factors, whatever the distribution of values
in a game tree is. For the trivial case of board evaluator compe-
tence of exactly 50%, that is, guessing, these cases are leveled
out completely, For the case of constant error probabilities, the
comparison between product propagation and minimaxing can
be nailed down analytically to a simple difference, which makes
the compensative factors favoring the competing backup rules
evident.

By putting together all the cases listed in Table I, substantial
simplifications can be made. To start with, each pair of cases,
one favoring minimaxing and the other favoring product prop-
agation, both being associated with the same number of errors
and falling in the same interval, cancels itself out. For example,
there are two cases with a single error in interval I3—see the
third line below the header in Table I—one favoring minimax-
ing (the error occurs in position M2), the other favoring product
propagation (the error occurs in position P2).

This leaves us with only eight remaining cases, half of which
related to interval I2, the other half related to interval I4.
Each case comprises four positions, each of which may be
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TABLE I
SUMMARY OF PREFERENCES (OF THE CRITICAL CASES) BASED ON COMPLETE ANALYSIS OF THE BASIC SITUATION

WITH DIFFERENCES BETWEEN MINIMAX AND PRODUCT

erroneously evaluated (with probability p) or correctly (with
probability 1− p). The total frequency for a case amounts then
to pn∗(1− p)(4−n) for exactly n positions being erroneously
evaluated.

A calculation of the compensative benefits of the competing
backup rules, separately done for intervals I4 and I2 looks as
follows. Positive values are in favor of minimaxing, negative
ones in favor of product propagation in formula (5), and vice
versa in (6), as follows:

I4 : ((1−p)4+(1−p)3∗p−(1−p)2∗p2−(1−p)∗p3) (5)

I2 : ((1−p)3∗p+(1−p)2∗p2−(1−p)∗p3−p4) (6)

For details of the derivation, see [16].
The expressions in formulas (5) and (6) both contain a com-

mon factor g(p) = (1− p)3 + (1− p)2∗p− (1− p)∗p2 − p3,
so that (5) can be rewritten as (1− p)∗g(p) and (6) as p∗g(p).

Let N(I4) and N(I2) be the numbers of positions falling in
intervals I4 and I2, respectively. If

I2, I4 : (1− p)∗N(I4) > p∗N(I2) (7)

holds, minimaxing is superior to product propagation, other-
wise the opposite is the case.

Apparently, the comparison depends on two complemen-
tary factors—the error probability, and the relation between
the number of cases falling in intervals I2 and I4. Assessing
the impact of the error probability is simple—the better the
board evaluator is, the better this is for minimaxing. Assessing
the impact of the relation between the number of cases falling
in intervals I2 and I4 involves the following argument. In
order for Product to make a move decision different from
that of Minimax, the interval I2 must be larger than I4, oth-
erwise f ′(P1)∗f ′(P2) is not greater than f ′(M1)∗f ′(M2).
Consequently, there are more cases in which the draw value
falls in interval I2 than this is the case for interval I4. This
means that product propagation is superior to minimaxing
for evaluators that are not ‘too good’, that is, for evaluators

where p is not small enough so that (1− p)/p ≤ N(I2)/N(I4)
[cf. (7)].

As shown below, it requires an evaluator with at most a few
percent error rate to make minimaxing superior to product prop-
agation for the kind of constellations considered here (that is,
constant error probabilities and the tree model underlying the
analyses below).

The model as it has been discussed so far, accounts for depth
2 searches only, since it exploits a particular coincidence that
is only present for these shallow searches. The leaf node val-
ues of product propagation and minimaxing correspond exactly
with f ′(n) = wc(f(n)). This is only the case for static values,
but not for backup values returned from deeper searches, even
though they may derive from corresponding evaluations of their
leaf nodes. An attempt to extend the model to larger search
depths would cause a combinatorial explosion of the number
of cases to be distinguished. This is mainly because the strict
ordering between the values P2, M2, M1, and P1 (see Fig. 4)
does not hold for P2 in depth 3 for dynamic values, with the
following consequences.
• There are eight values (four Minimax and four Product

values) to consider instead of four, each of them requir-
ing a distinction of whether it is correct or not (256 cases
instead of only 16).
• There are nine possible positions instead of five for the

draw value.
• Unlike for the basic case of depth 2 searches, variations in

the relative order of the values associated with the nodes
at depth 2 must be distinguished for depth 3 searches,
especially for the product propagation values. The com-
binations here are less regular, so we did not do precise
calculations of the number of cases.

Altogether, combinatorics yields in the range of 80 000 cases
for a depth 3 analysis as opposed to the 80 cases for depth 2,
which makes it impractical to pursue the analysis along the
same lines. So, our qualitative analysis essentially boils down
to a comparative analysis of the decision quality of Minimax vs.
Product. Both search to a fixed depth of exactly 2, where they
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Fig. 5. Illustration of complete tree generation.

backup from exactly corresponding static values, and apply
their respective backup rules exactly once. The major result is
that Product’s decisions are slightly more often correct than the
ones of Minimax.

V. QUANTITATIVE ANALYSIS OF BACKUP PREFERENCES

In order to compare the two competing backup rules also on
trees of depth 3 in terms of critical cases, we perform a quanti-
tative analysis of backup preferences. We compute the outcome
of all possible search trees according to a specific tree model,
the one defined in [9] and summarized above. In these search
trees, we accumulate the respective errors made by the two
backup rules in critical cases.

First, we explain the complete tree generation with full enu-
meration. Based on that, we present our quantitative analyses
and results for depths 2 and 3.

A. Complete Tree Generation

Based on the general tree generation approach explained
above, let us elaborate on the specifics of the complete tree gen-
eration with full enumeration (see Fig. 5 for an illustration).
Depending on the investigated case, some heuristic value is
assigned to the root node R. Each search tree is built recursively
as indicated above. Through full enumeration of all increments
at each node, the complete set of trees is created.

Explaining this in more detail for depth 1 first, a representa-
tive tree with node D1,1 is created with some increment, e.g., 0,
and analogously node D1,2 with some independent increment.
This is repeated for all possible increments for both branches.
According to the general tree generation approach explained
above, uniformly distributed integer increments ranging from 0
to 8 are assumed, using a = 8 in (3). Since we generate binary
trees, pairs of all possible combinations of values result, i.e., a
total of 92 nodes.

For depth 2, the same generation procedure is applied, but
because of the recursive tree generation, it has to be done for
both D1,1 and D1,2 at level 1 as the new roots (with their

respective heuristic values), and more precisely, because of the
full enumeration, for each pair of instances of D1,1 and D1,2.
So, each tree representative has leaf nodes D2,1 to D2,4, as
shown in Fig. 5. Because of the full enumeration, a total of
N2= 96 leaf nodes at depth 2 result, in principle (for all cases
and six nodes with assigned values).

In order to cope with the combinatorics, two measures for
reducing the generation effort were implemented. The first one
is possible already for depth 1, since it makes no difference,
whether the concrete increments leading to D1,1 and D1,2,
are, e.g., 4 and 5 or 5 and 4, respectively. Therefore, loop-
ing over increment values is nested in such a way that each
value combination is generated only once. However, it has to
be counted twice for depth 1, more generally for deeper trees as
often as it would occur. The second measure handles directed
acyclic graphs (DAGs) instead of trees in situations where
the same sum of different contributions of increments results,
e.g., for increments 5 and 3 in one branch of a depth 2 tree,
and 6 and 4 in another, since 5− 3 and 6− 4 have the same
result.12

These reductions of the generation effort are, of course, even
more important for the complete tree generation at depth 3.
Still, when expanding the tree computations from level 2 to
level 3, combinatorics in the number of search trees generated
led us to focus on certain properties of interest. For a = 8, 9
is the number of possible cases of increments in one move
in the tree model. An upper bound for the number of depth
2 trees is N2 (ignoring the reductions above). Each depth 2
tree has 4 leaf nodes, each of which has 2 successors at level
3. Therefore, 8 new nodes result for the expansion of each
tree from depth 2 to 3, so that there are N3 = (a+ 1)8∗N2

depth 3 trees, that is, in the order of 1013. So, combinatorics
strikes already. Consequently, we reduced the value of the max-
imum increment a at levels 2 and 3, so that some combinations
of values for a at these levels were investigated, as detailed
below.

It remains to be stated exactly which errors ec [as defined
in (1)] we used in the course of this complete tree generation—
c = 4. For estimating probabilities by Product through f ′, we
mapped using f ′(n) = w1(f(n)), i.e., c = 1. For this special
case, (2) is the same function as originally proposed by Pearl [4]
to “translate” heuristic evaluations into estimates of the proba-
bility of winning the game from these positions. By using this
f ′ function for heuristic evaluation, Product makes its move
decisions, recursively backing them up to depth 1.

In the course of the complete tree generation, also the move
decision errors made by Minimax and Product, respectively, are
accumulated. Examples of such errors are given above, which
can only occur in critical cases. So, these cases have to be iden-
tified, and the move decision errors accumulated. This requires
backing-up the heuristic values with minimaxing and prod-
uct propagation, respectively. Actually, only the backup values
at depth 1 are relevant, since the move decisions are based
on them. According to the first condition for a critical case,
Minimax and Product must select a different move. According
to the second condition, one move leads to a won position,
while the other leads to a lost position. The first condition is

12For a MAX node, the increment is added, for a MIN node subtracted.
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easy to evaluate, and only if it is fulfilled, the second one is
evaluated. However, it can only be evaluated probabilistically
in the course of this tree generation, since all cases have to
be included, which occur with different probabilities according
to (2).

Let us explain this probabilistic evaluation using the exam-
ple of a move decision error as illustrated in Fig. 1. Instead of
the concrete WIN and LOSS assignments, however, the prob-
abilities of WIN and LOSS have to be determined for the
assigned heuristic values using (2). For the left branch rooted in
node B, these probabilities can simply be multiplied, since they
are independent of each other. And since a WIN for node B
can only occur if both successor nodes are WIN , this is suffi-
cient. In the right branch rooted in node E, in contrast, all cases
have to be treated where at least one of the successor nodes is a
LOSS, since E is a LOSS. All these probabilities relevant in
this case have to be multiplied again and result in the probability
that Minimax makes this move decision error. For all the gen-
erated trees, these errors of Minimax and Product, respectively,
are accumulated separately.

B. Quantitative Results for Depth 2

Before we elaborate on various aspects of depth 3 searches
in detail, we first present results for depth 2. For the chosen
search tree parameters, 3,886 critical cases result at level 2. For
these, subtracting the respective error accumulation of Minimax
(50.7895%) from the one of Product (49.2105%) results in
a difference of −1.579 percent. Since Minimax made more
errors, there is a slight preference of Product over Minimax for
depth 2 searches.

For depth 2 (only), applying the oversimplifying assump-
tion of a uniform error distribution enables us to compute a
numerical relation between the quality of the evaluation func-
tion and the ratio between the number of cases where the draw
value falls in intervals I2 or I4, respectively. In the qualitative
analysis in the preceding section, these have been identified
as the two compensative factors responsible for the superiority
of Minimax or Product, respectively. Based on the assumption
of a uniform error distribution, we successively increased the
quality of the evaluation function, in order to determine when
Minimax becomes superior to Product. This occurred at about
95.2% correct evaluations (and thus at about 4.8% incorrect
ones).

Formula (7) above expresses superiority of the competing
backup rules under simplified conditions for depth 2 searches.
This expression, (1− p)∗N(I4) > p∗N(I2), relates the error
probability p to the number of cases where the draw value falls
in intervals I2 and I4, respectively. For the score of 95.2% cor-
rect evaluations, the number of cases where the draw value falls
in interval I2, N(I2), is almost 20 times higher than the corre-
sponding number for interval I4, N(I4), to compensate for the
ratio between 4.8% and 95.2%.

C. Quantitative Analysis for Depth 3

The quantitative analysis for depth 3 is more intricate. So,
we have to explain specific variations of the increments, as

indicated above in the context of complete tree generation.
These variations and the interpretation of the results for depth
3 focus on specific situations with characteristic properties, in
order to investigate the respective capabilities of the competing
backup rules.

1) Bias in Favor of the First Player: In addition, there is
another issue to consider when expanding depth 2 searches to
depth 3 according to our tree model. Unlike at even depths,
searches to odd depths involve the application of value incre-
ments by the side to move first once more than by the other
side. As a consequence, the distribution of values over the leaf
nodes in a search to an odd depth has a strong bias in favor
of the side to move first. This effect is particularly pronounced
when the leaf node values are built by adding two increments
in one and only one increment in the other direction. In order
to compensate for this bias, we adapted the value of the root
node, which is the starting point for the value assignment pro-
cedure, so that the set of values assigned to the leaf nodes is
roughly balanced between those favoring one or the other side.
For a maximum increment of 3, the average increase of the root
node value at the leaf nodes is 1.5, the average of all incre-
ments. Thus, we computed two depth 3 searches according to
the tree model with maximum increment 3, one starting with
a root value of −1, the other with a value of −2. The result
was that 0.5% of all critical cases favor Product for the root
value of −2, while 0.8% of all critical cases favor Minimax for
the root value of −1. Hence, there is some evidence from these
searches that Minimax is competitive to Product under these
conditions.

2) Degree of Advantage of One Player—Variations of the
Root Node Value: We conjectured that the respective qual-
ity of the two backup rules under investigation could depend
on the degree of advantage of one player over the other in a
given position. This is important from a strategic perspective
for games where the ultimate result is either a win or a loss, or
possibly, a draw, such as chess. If one side has a big advan-
tage, it should tend to avoid any risk and counter-play. The
other side should generally look for complications, seeking pos-
sible counter-chances, if any. Our examinations should show,
which of the competing backup rules is more suitable to follow
a risk-avoidance or a chance-seeking strategy, respectively.

In our models, variations of the root node value may lead to
situations where one of the players is favored substantially by
most of the leaf node positions, or the positions may be more or
less evenly distributed, or they may be somewhere in between
these two pronounced situations. So, the value assigned to the
root node has been varied, which determines the distribution of
values at the leaf nodes according to the assumptions underly-
ing the tree model. Depending on this value, the proportion of
positive to negative leaf node scores changes.

3) “Quiet” Versus “Nonquiet” Situations—Variations of the
Maximum Increment Value: Another category of situations is
important from the perspective of the impact that individual
move decisions may have. In “quiet” positions,13 winning may
require the accumulation of several minor advantages; in other

13This is conceptually related to the notions quiescent and quiescence search
in the context of computer chess as coined already by Turing [25].
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TABLE II
PERCENTAGE DIFFERENCES FAVORING MINIMAX (POSITIVE NUMBERS) OR PRODUCT (NEGATIVE NUMBERS). ACCORDING TO

VARYING VALUE DISTRIBUTIONS AND ROOT NODE VALUES (−4 TO 2)

words, a suboptimal decision may not immediately lead to a
very bad situation. In “nonquiet” positions, in contrast, there
may exist an increasing number of situations with a forced
move, where a player must make a specific move, since oth-
erwise his position will become much worse. Also for this
category of situations our examinations should show which of
the competing backup rules is more suitable, if any.

The maximum value increment, which regulates the score
assignment to nodes on deeper levels from their predecessors
in the tree, has been strongly reduced to a value of 3 from
a value of 8 in the original tree model. Moreover, this reduc-
tion has been done identically for all three search levels. Since
this increment is comparably small, it appears worthwhile to
examine also some larger increments. An increase of the max-
imum increment at some levels in the search tree would have
to go together with a decrease at some other levels. In order
to produce most distinct distributions of values, we varied the
maximum increment on the last (third) level of the search tree,
compensated by a joint change of the maximum increment (in
reverse direction) on the two other levels of the search tree.

These variations lead to varying score differences between
adjacent leaf nodes, depending on the maximum increment
value at the last level of the search tree. In case of a com-
parably low maximum increment value, the overall situation
tends to appear “quiet” in the sense that only small advantages
can be obtained, and there are small differences of the values
between competing candidate moves. In case of a comparably
high maximum increment value, the overall situation tends to
appear rather “nonquiet” in the sense that occasionally larger
advantages can be obtained, and also the differences between
the values of competing candidate moves can be larger.

D. Quantitative Results for Depth 3

Our quantitative results of comparing the two backup rules
for depth 3 are based on exhaustive analyses for several com-
binations of these parameters. So, they focus on the two
categories of situations as described above, and their combined
occurrences.

In Table II, varying value distributions and root node values
are given, together with the corresponding results of searches
of the competing backup rules, indicating the preferable backup
rule in terms of percentage differences in critical positions.
The first two columns contain specifications of the value
distributions for building the search tree. In the first column,
the pairs of maximum increment parameters are listed, first

the one limiting increments for depths 1 and 2, then the one
limiting the increment for depth 3. In the second column, the
approximate value for the root node is given,14 for which the
value distribution resulting from these increment parameters
is mostly balanced between the players. For example, (4,2) in
the first line below the header in the first column, indicates a
maximum increment of 4 at depths 1 and 2, and a maximum
increment of 2 at depth 3. For this combination of increments,
the (approximate) value for the ‘most central’ root node
amounts to −1, as given in the first line below the header in the
second column. The remaining columns in this table, except
the header line, contain percent values like the one given above
for the depth 2 result. They express preferences in favor of
Minimax (positive numbers) or Product (negative numbers),
respectively, for the combination of root value (−4 to +2,
according to the header line) and search tree level increments
(first and second column) corresponding to their position in the
table. The last column lists mean values of the percent values
given to the left in each line, i.e., it averages over the values in
columns 3 to 8 in the same line.

As shown in the header line of the table, we varied the scores
of the root node between −4 and +2, and we picked a small
set of pairs of maximum increment values for depth 3 and for
the two preceding levels, respectively. We chose seven com-
binations, which exemplify the kind of constellations already
referred to in the comparison between depth 2 and depth 3
searches above (see the leftmost column in Table II). They
comprise “minimal” changes, that is, incrementing at all three
levels in a roughly comparable manner up to a maximum value
between 2 and 4 (see the first three lines below the header in
the table), and ‘maximum diversion’ by allowing the increment
at levels 1 and 2 to be at most 1, while varying the maximum
increment at level 3 between 3 and 6 (the other four lines).

The numbers in Table II provide evidence for pronounced
differences:
• The relative advantages of the competing backup rules

vary depending on the value distribution of the leaf nodes,
which is determined through the given parameters. In
each line of this table, the root values are varied. In the
first line below the header, the one with the combinations
of maximum values of increments—(4,2)—all values are
in favor of Product. In all the other lines below, the

14It is an approximation for which the values of the resulting leaf nodes are
mostly balanced between positive and negative ones for this combination of
increments.
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number of cases favoring Minimax is almost the same as
those favoring Product. The respective advantage depends
on the varying root values.
• The table also shows that the differences between the

competing backup rules can become relatively large—
more than eight percentage points between the two most
extreme cases. There are a few cases in favor of each of
the competing backup rules, which indicate a preference
in the order of four percentage points (e.g., the cell in
the second line below the header and the third column
indicates a preference for Product by 4.1%, while the cell
in the fifth line below the header and the fourth column
expresses a preference for Minimax by the same amount).

Concerning the relative advantages of the competing backup
rules across varying situations, the data listed in Table II
indicate the following preferences.
• In comparably “quiet” situations (see the first line below

the header in the table), Product is superior.
• In “nonquiet” situations, Minimax is superior, with

increasingly larger sets of values at the leaf nodes. This
can easily be seen in the rightmost column in Table II;
the higher the increment at level 3, the more pronounced
becomes the advantage of Minimax.
• Independently of the proportion of “quiet” versus

“nonquiet” situations, Table II illustrates that Product is
increasingly better than Minimax, the more the root val-
ues deviate from the values in column 2. That is, if one
player has a clear winning position, Product becomes
slightly better. This effect can be observed in the table by
comparing percentage points in favor of Product in each
line: starting from relatively low values at those places
in the middle (root values close to the value in the same
line in column 2), percentage points increasingly favor
Product for cells that are located more to the left or to
the right of the ‘central’ value.
• The results obtained for the trees with the most even

distribution of positive and negative values, that is, for
root values close to the center of the leaf node value
distribution (according to the values in column 2), favor
Minimax. In particular, the percentage value in each line
is highest if root value and root center are identical, e.g.,
−1.5% in the first column below the header for root value
and root center both equal to −1.

Altogether, these results demonstrate that each of the two
competing backup rules has systematic advantages and disad-
vantages in comparison to the other, depending on properties of
the leaf node value distributions in the search tree.

VI. SIMULATION STUDY

Unfortunately, the systematic analyses above cannot be
extended further due to a combinatorial explosion. Therefore,
we present also a simulation study that allows less shallow
searches as well. In order to make this study as general as
possible, synthetic search trees are constructed that fulfil the
properties of our game tree model (instead of defining any
simplified specific game).

A. Tree Generation for Simulated Games

Based on the general tree generation approach explained
above in Section III-C, let us elaborate on the specifics of the
tree generation for simulated games, in contrast to the complete
tree generation explained in Section V-A. Since no complete
enumeration of all trees is to be done, only the general recursive
tree construction is relevant, but increment values according to
(3) have to be assigned instead. Instead of the enumeration, it
requires concrete WIN and LOSS values to be assigned con-
sistently with (1)—we used c = 16 in the course of this tree
generation. So, no propagation of probabilities for all relevant
cases is required.

Both the assignment of increments and of WIN and LOSS
values are stochastic events in the course of the simulations.
Generally, every stochastic event in the tree is simulated by a
call to a pseudorandom number generator, parameterized inde-
pendently of the relative frequencies achieved earlier in the tree
generation process.

B. Design of the Simulation Study

In order to compare Minimax with Product, we performed
a simulation study based upon previous ones described in [9].
However, the simulation study as reported below deals with
simulated game contests.

Generally, synthetic game trees satisfying the assumptions
of the model in Section III were generated according to the
method described in Section VI-A with the specifics elaborated
on above. Then searches of different depths were performed
in these game trees. These searches computed minimax values
MMd

f (n) and values PP d
f ′(n) according to product propa-

gation, respectively, for all the possible depths d in such a
tree.15

This simulation study had two distinct parts, depending on
how the values from f were mapped for their use by Product. In
the first part, we mapped using f ′(n) = w1(f(n)), i.e., c = 1.
That is, f ′ as used by Product in this part of the simulation
study provided estimates of the probabilities to win, which is
realistic in practice. A special feature of our synthetic model is
that probabilities to win are actually known. In the following,
we refer to these as actual probabilities. In order to see how
well Product can perform in the limit, we provided it with these
probabilities in the second part of our simulation study. More
precisely, for the given value of c = 16, which parameterized
the model, we mapped through f ′ = w16(f(n)) into the proba-
bilities as given in this model. Note, that this can normally not
be done in practical games like chess, where the probabilities
may just be estimated.

The goal of performing these searches was to gather data for
the errors of move decisions and the scores of game contests for

15The static evaluation function f is characterized in such a simulated tree
search by the corresponding parameters. Backward pruning was used to avoid
unnecessary effort for the minimax searches; see for instance [26] for a descrip-
tion of the alpha-beta algorithm. This pruning complicates the reproducibility
of the trees, so that we stored them in memory. Within such a stored tree of
depth dg , all searches possible were performed, where the maximum search
depth is dg , of course, and more searches to depths smaller than dg are possi-
ble. Another approach to random tree generation during the search is described
in [27, Sec. IV].
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Fig. 6. Quality of move decisions by Minimax, Product-actual using actual
probabilities, and Product-est using estimated probabilities.

the comparison of Minimax with Product. So, let us define such
game contests within the synthetic trees. Both Minimax and
Product perform full-width searches to the same given depth.
We had both Minimax and Product search to the same depths,
although this is unfair to Minimax. Each game was played twice
to allow both Minimax and Product to move first. In our syn-
thetic trees, the nodes do not represent real game positions,
but they are just characterized through a true value and a cor-
responding heuristic estimate, which are related through the
function ec as defined in (1).

The model underlying our synthetic trees does not contain
any real terminal nodes (like check-mate in chess). Therefore,
we had to define another means of terminating a game. In fact,
few of the games in real tournament chess end with actual draw
or check-mate, since either one player resigns or both players
agree upon a draw, or the games are adjudicated. We chose the
last of these possibilities for our synthetic games. In fact, adju-
dication is guaranteed here to be perfect, since the true values
of all “positions” are known.

C. Results

First, we present the results from our simulation study on the
respective quality of move decisions and then the results from
game contests.

1) Quality of Move Decisions: Fig. 6 shows the quality of
move decisions for increasing search depths that occurred in
the game contests played according to our simulation study
design.16 For a given depth d, the frequency of making a
wrong move decision is given for Minimax, Product-actual
with the actual probabilities, and Product-est using the esti-
mated probabilities. The errors made by Minimax are always
slightly more frequent than those of Product with the actual
probabilities.17 Compared with Product using the estimated
probabilities, Minimax makes a wrong move decision slightly
more frequently for lower search depths, but less frequently for

16The various parameters are explained in Section III. e is the average
probability of error of static evaluation in these simulation runs.

17In fact, when the actual probabilities are known, product propagation is a
better backup rule than minimaxing. In contrast, minimaxing is favored by low
errors [12].

higher search depths. Note, however, that the differences among
all three competitors are rather small.

So, it is difficult to tell from these data, which backup rule
propagates the given values “better” in the sense of making
better decisions based on them. Product with the actual prob-
abilities makes move decision errors less frequently, but the
probabilities can only be estimated in practice. With estimated
probabilities, however, the case is undecided for searching to
the same depth. Much as in the results of the systematic anal-
ysis above, Product is better for depth 2, but with increasingly
deeper search, Minimax tends to become better.

In reality, Minimax can search much deeper with the same
amount of nodes due to its well-known pruning algorithms.
How much deeper Minimax can search, depends primarily on
the successor ordering. For random ordering, the search depth
can roughly be increased by a factor of 4/3 [4], for very strong
ordering as observed in computer chess practice, the search
depth can nearly be doubled (it approaches the optimal factor
of 2) [17]. For example, the move decision error of Minimax
in Fig. 6 at depth 6 (which is certainly achievable with sim-
ple move ordering heuristics) is lower than that of Product-est
at depth 4. The decision error at depth 8 (when pruning might
allow the search depth to be doubled, which is not completely
unrealistic) is even clearly lower than the error of Product-
actual, which is not available in practice. So, under practical
conditions, the move decisions of Minimax searching deeper
than Product are clearly better than those of Product, even when
actual probabilities were available to Product.

Pearl [5] suspects that if judged against absolute standards
of WIN -LOSS status, a less pronounced improvement with
increasing search depth may be exhibited by minimaxing than
observed in computer chess practice. In contrast to typical chess
positions, in our simulations the true value of each position is
exactly known, but still this pronounced improvement is shown
(see Fig. 6).

2) Results from a Game Contest Between Minimax and
Product: We had Minimax play a game contest against
Product in synthetic trees according to the model of Section III.
This simulation study has two parts, one where Product uses
estimated probabilities, while in the other the actual probabili-
ties to win are available to Product.

In the first part of our simulation study, we had Minimax play
a game contest against Product where it had only estimates of
the probabilities available. Table III shows the results under this
realistic condition. Still, Product was allowed searching to the
same depth as Minimax.

While Minimax lost against Product for search depth 2,
it won for depths 3, 5 and higher. For instance, when both
Minimax and Product played to the same search depth d = 2,
Minimax won only 4,834 from a total of 393,213 game pairs,
while Product won 5,212. The results for depths 2 and 3 are
consistent with our analyses above.

Much as in the results of the game contest reported by Nau
[14], however, the overall score is only marginally better. In this
example, it amounts to 49.95% of all the game pairs. Therefore,
Table III also contains the scores of the critical games, where
one player was able to win an initial position for both sides. For
these, the advantage shows up more clearly (much as in [15]);
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TABLE III
RESULTS OF A GAME CONTEST BETWEEN PLAYERS MINIMAX AND PRODUCT—WITH Estimated PROBABILITIES—IN SYNTHETICALLY GENERATED

GAME TREES, BOTH MINIMAX AND PRODUCT SEARCHING TO THE SAME DEPTH d

TABLE IV
RESULTS OF A GAME CONTEST BETWEEN PLAYERS MINIMAX AND PRODUCT—WITH THE Actual PROBABILITIES—IN 11PSYNTHETICALLY

GENERATED GAME TREES, BOTH MINIMAX AND PRODUCT SEARCHING TO THE SAME DEPTH d

e.g., for the depth 2 part of the contest, Minimax won 48.12%
of the critical game pairs.

In order to see whether these results are significant, we used
the same approach for statistical analysis as [15]. We consid-
ered the null hypothesis that the number of pairs of wins is a
random event with probability one half, i.e., that each method
is equally good. The sign test is appropriate here, especially
since it requires no special assumptions about distributions of
the samples. The Significance column in Table III (and also in
Table IV) gives the probability that the data is consistent with
the null hypothesis. Small numbers (below, say, 0.05), indicate
that the deviation away from 50% in the percentage of wins is
unlikely to be from chance fluctuations. Large numbers indicate
that from this data one cannot reliably conclude which method
is best.18

For the critical games only, the results are statistically sig-
nificant, e.g., the probability that the result is due to chance
fluctuation for d = 2 is smaller than 0.01%. In terms of the total
number of game pairs, however, the results are not statistically
significant.

In the second part of our experiment, we had Minimax play
a game contest against Product where it had the actual proba-
bilities available. Table IV shows the results for those trees in
which also the results of Fig. 6 were gained. Under this unre-
alistically favorable condition and being allowed to search to
the same depth as Minimax, Product defeated Minimax. For
the critical games only, the results are clearly statistically sig-
nificant. For all depths, the probability that the result is due to
chance fluctuation is smaller than 0.005%.

In summary, even when searching to the same depth (which
is very unfair to Minimax because it could search far deeper due
to backward pruning), Product performed mostly worse under
the more realistic condition that only estimated probabilities are

180.00000 in these columns indicates that significance is even smaller than
this number, i.e., a highly significant result.

available. With increasing search depths starting at depth 5, the
superiority of Minimax over Product seems to become more
and more pronounced. Even when the actual probabilities to
win were available to Product, its performance was not at all
good enough to envisage that it could be better than Minimax
using one of its pruning algorithms.

VII. CONCLUSION

This paper shows through systematic analyses and in a sim-
ulation study using synthetic game trees (modeled according to
properties found in chess game trees) that product propagation
can be better than minimaxing only under specific conditions:
• the searches are shallow, or;
• the actual probabilities to win are available.

Apart from the second constellation, which constitutes a
rather specific case not present in practical games, these results
show complementary capabilities of the competing backup
rules, which are unnoticed in the literature so far. While product
propagation leads to the better decision quality, minimaxing is
the superior backup rule.

Product tends to make better decisions more frequently,
under realistic assumptions modeled after real game-playing
programs. As a consequence from this theoretical investiga-
tion, the decision quality based on product propagation may
still make it a viable alternative to minimaxing for game trees
where only very shallow searches are affordable. When there
is a huge number of alternatives to consider and only a sin-
gle application of the competing backup rules in each branch
can be made, the decision quality based on product propagation
is better than that based on minimaxing. This conclusion from
our own study is also supported by the result in [10] that min-
imaxing works better with smaller than with larger branching
factors.

However, Minimax can usually search deeper than Product
due to the availability of effective pruning algorithms. Even
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under the conditions where product propagation provides the
better backup values, minimaxing can come up with even better
values from its deeper searches.

In addition, we found new evidence that minimaxing profits
from better quality of the evaluation function used. However,
if one player has a clear winning position, Product becomes
slightly better. With respect to “quiet” versus “nonquiet” posi-
tions, i.e., situations with smaller versus larger differences
between heuristic values of the leaf nodes, Product or Minimax
tend to be slightly better, respectively.

Finally, the previous view that minimaxing—in contrast to
product propagation—should be effective specifically against
fallible opponents, is questionable. We have illustrated that
product propagation sometimes leads to errors in the “hope”
for blunders by fallible opponents, which top players rarely
make. We also showed in our game tree model with known true
values of positions a pronounced improvement with increasing
search depth of minimaxing as judged against these absolute
standards, in contrast to a previous conjecture in [5]. So, we
could not find evidence that product propagation should be a
better backup rule than minimaxing in current game-playing
practice with deep searches.
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